This file is indexed.

/usr/include/trilinos/ROL_CoherentExpUtility.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_COHERENTEXPUTILITY_HPP
#define ROL_COHERENTEXPUTILITY_HPP

#include "ROL_RiskMeasure.hpp"

/** @ingroup risk_group
    \class ROL::CoherentExpUtility
    \brief Provides the interface for the coherent entropic risk measure.

    The coherent entropic risk measure is
    \f[
       \mathcal{R}(X) = \inf_{\lambda > 0} \left\{
         \lambda \log\mathbb{E}\left[\exp\left(\frac{X}{\lambda}\right)\right]
         \right\}.
    \f]
    \f$\mathcal{R}\f$ is a law-invariant coherent risk measure.
    ROL implements this by augmenting the optimization vector \f$x_0\f$ with
    the parameter \f$\lambda\f$, then minimizes jointly for \f$(x_0,\lambda)\f$.
*/

namespace ROL {

template<class Real>
class CoherentExpUtility : public RiskMeasure<Real> {
private:
  bool firstReset_;

  Teuchos::RCP<Vector<Real> > scaledGradient1_;
  Teuchos::RCP<Vector<Real> > scaledGradient2_;
  Real dval1_;
  Real dval2_;
  Real dval3_;

  Teuchos::RCP<Vector<Real> > dualVector1_;
  Teuchos::RCP<Vector<Real> > dualVector2_;

  Real xstat_;
  Real vstat_;

public:
  CoherentExpUtility(void) : RiskMeasure<Real>(), firstReset_(true),
    dval1_(0), dval2_(0), dval3_(0), xstat_(0), vstat_(0) {}

  void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x) {
    Real zero(0);
    RiskMeasure<Real>::reset(x0,x);
    xstat_ = Teuchos::dyn_cast<const RiskVector<Real> >(x).getStatistic(0);
    if ( firstReset_ ) {
      scaledGradient1_ = (x0->dual()).clone();
      scaledGradient2_ = (x0->dual()).clone();
      dualVector1_ = (x0->dual()).clone();
      dualVector2_ = (x0->dual()).clone();
      firstReset_ = false;
    }
    scaledGradient1_->zero(); scaledGradient2_->zero();
    dualVector1_->zero(); dualVector2_->zero();
    dval1_ = zero; dval2_ = zero; dval3_ = zero;
  }

  void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x,
             Teuchos::RCP<Vector<Real> > &v0, const Vector<Real> &v) {
    reset(x0,x);
    v0 = Teuchos::rcp_const_cast<Vector<Real> >(
           Teuchos::dyn_cast<const RiskVector<Real> >(v).getVector());
    vstat_ = Teuchos::dyn_cast<const RiskVector<Real> >(v).getStatistic(0);
  }

  void update(const Real val, const Real weight) {
    RiskMeasure<Real>::val_ += weight * std::exp(val/xstat_);
  }

  Real getValue(SampleGenerator<Real> &sampler) {
    Real val = RiskMeasure<Real>::val_, ev(0);
    sampler.sumAll(&val,&ev,1);
    return xstat_*std::log(ev);
  }

  void update(const Real val, const Vector<Real> &g, const Real weight) {
    Real ev = std::exp(val/xstat_);
    RiskMeasure<Real>::val_ += weight * ev;
    RiskMeasure<Real>::gv_  += weight * ev * val;
    RiskMeasure<Real>::g_->axpy(weight*ev,g);
  }

  void getGradient(Vector<Real> &g, SampleGenerator<Real> &sampler) {
    Real one(1);
    // Perform sum over batches
    std::vector<Real> myval(2,0), val(2,0);
    myval[0] = RiskMeasure<Real>::val_;
    myval[1] = RiskMeasure<Real>::gv_;
    sampler.sumAll(&myval[0],&val[0],2);
    sampler.sumAll(*(RiskMeasure<Real>::g_),*dualVector1_);
    // Compute partial derivatives
    Real gstat = std::log(myval[0]) - myval[1]/(myval[0]*xstat_);
    dualVector1_->scale(one/myval[0]);
    // Set partial derivatives in g vector
    (Teuchos::dyn_cast<RiskVector<Real> >(g)).setVector(*dualVector1_);
    (Teuchos::dyn_cast<RiskVector<Real> >(g)).setStatistic(gstat);
  }

  void update(const Real val, const Vector<Real> &g, const Real gv, const Vector<Real> &hv,
                      const Real weight) {
    Real ev = std::exp(val/xstat_);
    RiskMeasure<Real>::val_ += weight * ev;
    RiskMeasure<Real>::gv_  += weight * ev * gv;
    dval1_                  += weight * ev * val;
    dval2_                  += weight * ev * val * val;
    dval3_                  += weight * ev * val * gv;
    RiskMeasure<Real>::g_->axpy(weight*ev,g);
    RiskMeasure<Real>::hv_->axpy(weight*ev,hv);
    scaledGradient1_->axpy(weight*ev*gv,g);
    scaledGradient2_->axpy(weight*ev*val,g);
  }

  void getHessVec(Vector<Real> &hv, SampleGenerator<Real> &sampler) {
    Real one(1);
    std::vector<Real> myval(5,0), val(5,0);
    myval[0] = RiskMeasure<Real>::val_;
    myval[1] = RiskMeasure<Real>::gv_;
    myval[2] = dval1_;
    myval[3] = dval2_;
    myval[4] = dval3_;
    sampler.sumAll(&myval[0],&val[0],5);

    Real xs2 = xstat_*xstat_;
    Real xs3 = xs2*xstat_;
    Real v02 = val[0]*val[0];
    Real h11 = (val[3]*val[0] - val[2]*val[2])/(v02*xs3) * vstat_;
    Real h12 = (val[1]*val[2] - val[4]*val[0])/(v02*xs2); 

    sampler.sumAll(*(RiskMeasure<Real>::hv_),*dualVector1_);
    sampler.sumAll(*scaledGradient1_,*dualVector2_);
    dualVector1_->axpy(one/xstat_,*dualVector2_);
    dualVector1_->scale(one/val[0]);
    dualVector2_->zero();
    sampler.sumAll(*(RiskMeasure<Real>::g_),*dualVector2_);
    dualVector1_->axpy(vstat_*val[2]/(xs2*v02)-val[1]/(v02*xstat_),*dualVector2_);
    dualVector2_->zero();
    sampler.sumAll(*scaledGradient2_,*dualVector2_);
    dualVector1_->axpy(-vstat_/val[0],*dualVector2_);

    (Teuchos::dyn_cast<RiskVector<Real> >(hv)).setVector(*dualVector1_);
    (Teuchos::dyn_cast<RiskVector<Real> >(hv)).setStatistic(h11+h12);
  }
};

}

#endif