/usr/include/trilinos/ROL_ColemanLiModel.hpp is in libtrilinos-rol-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_COLEMANLIMODEL_HPP
#define ROL_COLEMANLIMODEL_HPP
#include "ROL_TrustRegionModel.hpp"
#include "ROL_BoundConstraint.hpp"
#include "ROL_Secant.hpp"
/** @ingroup func_group
\class ROL::ColemanLiModel
\brief Provides the interface to evaluate interior trust-region model
functions from the Coleman-Li bound constrained trust-region algorithm.
-----
*/
namespace ROL {
template<class Real>
class ColemanLiModel : public TrustRegionModel<Real> {
private:
Teuchos::RCP<BoundConstraint<Real> > bnd_; // Bound constraint
Teuchos::RCP<Secant<Real> > sec_; // Secant storage
Teuchos::RCP<Vector<Real> > prim_, dual_, hv_; // Auxiliary storage
Teuchos::RCP<Vector<Real> > step_; // Step storage
Teuchos::RCP<Vector<Real> > cauchyStep_, cauchyScal_; // Cauchy point vectors
Teuchos::RCP<Vector<Real> > reflectStep_, reflectScal_; // Reflective step vectors
Teuchos::RCP<Vector<Real> > Dmat_; // sqrt(abs(v))
Teuchos::RCP<Vector<Real> > Cmat_; // diag(g) * dv/dx
const bool useSecantPrecond_; // Use secant as preconditioner (unused)
const bool useSecantHessVec_; // Use secant as Hessian
const Real TRradius_, stepBackMax_, stepBackScale_; // Primal transform parameters
const bool singleReflect_; // Use single reflection
Real sCs_, pred_; // Actual/predicted reduction
Elementwise::Multiply<Real> mult_; // Elementwise multiply
Elementwise::Divide<Real> div_; // Elementwise division
// Apply diagonal D matrix
void applyD( Vector<Real> &Dv, const Vector<Real> &v ) {
Dv.set(v);
Dv.applyBinary(div_,*Dmat_);
}
// Apply inverse of diagonal D matrix
void applyInverseD( Vector<Real> &Dv, const Vector<Real> &v ) {
Dv.set(v);
Dv.applyBinary(mult_,*Dmat_);
}
// Apply diagonal C matrix
void applyC( Vector<Real> &Cv, const Vector<Real> &v ) {
Cv.set(v);
Cv.applyBinary(mult_, *Cmat_);
}
void constructC(void) {
const Teuchos::RCP<const Vector<Real> > gc = TrustRegionModel<Real>::getGradient();
const Teuchos::RCP<const Vector<Real> > l = bnd_->getLowerVectorRCP();
const Teuchos::RCP<const Vector<Real> > u = bnd_->getUpperVectorRCP();
// Set Cmat_ to be the sign of the gradient
Cmat_->set(gc->dual());
Cmat_->applyUnary(Elementwise::Sign<Real>());
// If g < 0 and u = INF then set Cmat_ to zero
class NegGradInfU : public Elementwise::BinaryFunction<Real> {
public:
NegGradInfU(void) {}
Real apply(const Real &x, const Real &y) const {
const Real zero(0), one(1), INF(ROL_INF<Real>());
return (x < zero && y == INF) ? zero : one;
}
};
prim_->set(gc->dual());
prim_->applyBinary(NegGradInfU(), *u);
Cmat_->applyBinary(mult_, *prim_);
// If g >= 0 and l = -INF then set Cmat_ to zero
class PosGradNinfL : public Elementwise::BinaryFunction<Real> {
public:
PosGradNinfL(void) {}
Real apply(const Real &x, const Real &y) const {
const Real zero(0), one(1), NINF(ROL_NINF<Real>());
return (x >= zero && y == NINF) ? zero : one;
}
};
prim_->set(gc->dual());
prim_->applyBinary(PosGradNinfL(), *l);
Cmat_->applyBinary(mult_, *prim_);
// Pointwise multiply Cmat_ with the gradient
Cmat_->applyBinary(mult_, gc->dual());
}
void constructInverseD(void) {
const Teuchos::RCP<const Vector<Real> > xc = TrustRegionModel<Real>::getIterate();
const Teuchos::RCP<const Vector<Real> > gc = TrustRegionModel<Real>::getGradient();
const Teuchos::RCP<const Vector<Real> > l = bnd_->getLowerVectorRCP();
const Teuchos::RCP<const Vector<Real> > u = bnd_->getUpperVectorRCP();
const Real zero(0), one(1), INF(ROL_INF<Real>()), NINF(ROL_NINF<Real>());
const int LESS_THAN = 0;
const int EQUAL_TO = 1;
const int GREATER_THAN = 2;
Dmat_->zero();
// CASE (i)
// Mask for negative gradient (m1 is 1 if g is negative and 0 otherwise)
reflectStep_->applyBinary(Elementwise::ValueSet<Real>(zero, LESS_THAN),gc->dual());
// Mask for finite upper bounds (m2 is 1 if u is finite and 0 otherwise)
reflectScal_->applyBinary(Elementwise::ValueSet<Real>(INF, LESS_THAN),*u);
// Mask for g_i < 0 and u_i < inf
reflectScal_->applyBinary(mult_,*reflectStep_);
// prim_i = { u_i-x_i if g_i < 0 and u_i < inf
// { 0 otherwise
prim_->set(*u); prim_->axpy(-one,*xc);
prim_->applyBinary(mult_,*reflectScal_);
// Add to D
Dmat_->plus(*prim_);
// CASE (iii)
// Mask for infinite upper bounds
reflectScal_->applyBinary(Elementwise::ValueSet<Real>(INF, EQUAL_TO),*u);
// Mask for g_i < 0 and u_i = inf
reflectScal_->applyBinary(mult_,*reflectStep_);
// prim_i = { -1 if g_i < 0 and u_i = inf
// { 0 otherwise
prim_->applyUnary(Elementwise::Fill<Real>(-one));
prim_->applyBinary(mult_,*reflectScal_);
// Add to D
Dmat_->plus(*prim_);
// CASE (ii)
// m1 = 1-m1
reflectStep_->scale(-one);
reflectStep_->applyUnary(Elementwise::Shift<Real>(one));
// Mask for finite lower bounds
reflectScal_->applyBinary(Elementwise::ValueSet<Real>(NINF, GREATER_THAN),*l);
// Zero out elements of Jacobian with l_i=-inf
reflectScal_->applyBinary(mult_,*reflectStep_);
// prim_i = { x_i-l_i if g_i >= 0 and l_i > -inf
// { 0 otherwise
prim_->set(*xc); prim_->axpy(-one,*l);
prim_->applyBinary(mult_,*reflectScal_);
// Add to D
Dmat_->plus(*prim_);
// CASE (iv)
// Mask for infinite lower bounds
reflectScal_->applyBinary(Elementwise::ValueSet<Real>(NINF, EQUAL_TO),*l);
// Mask for g_i>=0 and l_i=-inf
reflectScal_->applyBinary(mult_,*reflectStep_);
// prim_i = { 1 if g_i >= 0 and l_i = -inf
// { 0 otherwise
prim_->applyUnary(Elementwise::Fill<Real>(one));
prim_->applyBinary(mult_,*reflectScal_);
// Add to D
Dmat_->plus(*prim_);
// d_i = { u_i-x_i if g_i < 0, u_i<inf
// { -1 if g_i < 0, u_i=inf
// { x_i-l_i if g_i >= 0, l_i>-inf
// { 1 if g_i >= 0, l_i=-inf
Dmat_->applyUnary(Elementwise::AbsoluteValue<Real>());
Dmat_->applyUnary(Elementwise::SquareRoot<Real>());
}
// Build diagonal D and C matrices
void initialize(Objective<Real> &obj, BoundConstraint<Real> &bnd,
const Vector<Real> &x, const Vector<Real> &g) {
bnd_ = Teuchos::rcpFromRef(bnd);
prim_ = x.clone();
dual_ = g.clone();
hv_ = g.clone();
step_ = x.clone();
Dmat_ = x.clone();
Cmat_ = x.clone();
cauchyStep_ = x.clone();
cauchyScal_ = x.clone();
reflectStep_ = x.clone();
reflectScal_ = x.clone();
constructC();
constructInverseD();
}
public:
ColemanLiModel( Objective<Real> &obj, BoundConstraint<Real> &bnd,
const Vector<Real> &x, const Vector<Real> &g)
: TrustRegionModel<Real>::TrustRegionModel(obj,x,g,false),
sec_(Teuchos::null), useSecantPrecond_(false), useSecantHessVec_(false),
TRradius_(1), stepBackMax_(0.9999), stepBackScale_(1),
singleReflect_(true), sCs_(0), pred_(0) {
initialize(obj,bnd,x,g);
}
ColemanLiModel( Objective<Real> &obj, BoundConstraint<Real> &bnd,
const Vector<Real> &x, const Vector<Real> &g,
const Real TRradius, const Real stepBackMax, const Real stepBackScale,
const bool singleReflect = true )
: TrustRegionModel<Real>::TrustRegionModel(obj,x,g,false),
sec_(Teuchos::null), useSecantPrecond_(false), useSecantHessVec_(false),
TRradius_(TRradius), stepBackMax_(stepBackMax), stepBackScale_(stepBackScale),
singleReflect_(singleReflect), sCs_(0), pred_(0) {
initialize(obj,bnd,x,g);
}
ColemanLiModel( Objective<Real> &obj, BoundConstraint<Real> &bnd,
const Vector<Real> &x, const Vector<Real> &g,
const Teuchos::RCP<Secant<Real> > &sec,
const bool useSecantPrecond, const bool useSecantHessVec,
const Real TRradius, const Real stepBackMax, const Real stepBackScale,
const bool singleReflect = true )
: TrustRegionModel<Real>::TrustRegionModel(obj,x,g,false),
sec_(sec), useSecantPrecond_(useSecantPrecond), useSecantHessVec_(useSecantHessVec),
TRradius_(TRradius), stepBackMax_(stepBackMax), stepBackScale_(stepBackScale),
singleReflect_(singleReflect), sCs_(0), pred_(0) {
initialize(obj,bnd,x,g);
}
// Note that s is the \f$\hat{s}\f$ and \f$\psi\f$ is the $\hat\psi$ from the paper
Real value( const Vector<Real> &s, Real &tol ) {
const Teuchos::RCP<const Vector<Real> > gc = TrustRegionModel<Real>::getGradient();
// Apply Hessian to s
hessVec(*hv_, s, s, tol);
hv_->scale(static_cast<Real>(0.5));
// Form inv(D) * g
applyInverseD(*prim_, gc->dual());
// Add scaled gradient to Hessian in direction s
hv_->plus(prim_->dual());
return hv_->dot(s.dual());
}
void gradient( Vector<Real> &g, const Vector<Real> &s, Real &tol ) {
const Teuchos::RCP<const Vector<Real> > gc = TrustRegionModel<Real>::getGradient();
hessVec(g, s, s, tol);
applyInverseD(*prim_, gc->dual());
g.plus(prim_->dual());
}
void hessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &s, Real &tol ) {
const Teuchos::RCP<const Vector<Real> > gc = TrustRegionModel<Real>::getGradient();
// Build B = inv(D) * Hessian * inv(D)
applyInverseD(*prim_, v);
if(useSecantHessVec_) {
sec_->applyB(*dual_, *prim_);
}
else {
const Teuchos::RCP<const Vector<Real> > xc = TrustRegionModel<Real>::getIterate();
TrustRegionModel<Real>::getObjective()->hessVec(*dual_, *prim_, *xc, tol);
}
applyInverseD(hv, *dual_);
// Build C = diag(g) J
applyC(*prim_, v);
hv.plus(prim_->dual());
}
void dualTransform( Vector<Real> &tv, const Vector<Real> &v ) {
applyInverseD(tv, v);
}
void primalTransform( Vector<Real> &tiv, const Vector<Real> &v ) {
Real tol = std::sqrt(ROL_EPSILON<Real>());
/**************************************************************************/
/* PERFORM OPTIMAL SCALING OF TRUST REGION SUBPROBLEM SOLUTION */
/**************************************************************************/
applyInverseD(tiv, v);
// Get bounds on scalar variable
Real lowerBoundV(ROL_NINF<Real>()), upperBoundV(ROL_INF<Real>());
getScalarBounds(lowerBoundV, upperBoundV, tiv);
// Minimize one dimensional quadratic over bounds
Real tauV(1);
Real valueV = minimize1D(tauV, lowerBoundV, upperBoundV, v);
/**************************************************************************/
/* COMPUTE CAUCHY POINT: STORED IN cauchyStep_ AND cauchyScal_ */
/**************************************************************************/
Real valueG = computeCauchyPoint();
/**************************************************************************/
/* COMPUTE REFLECTIVE STEP: STORED IN reflectStep_ AND reflectScal_ */
/**************************************************************************/
if ( singleReflect_ ) {
computeReflectiveStep(*reflectStep_, v, tiv);
}
else {
computeFullReflectiveStep(*reflectStep_, v, tiv);
}
applyInverseD(*reflectScal_, *reflectStep_);
// Get bounds on scalar variable
Real lowerBoundR(ROL_NINF<Real>()), upperBoundR(ROL_INF<Real>());
getScalarBounds(lowerBoundR, upperBoundR, *reflectScal_);
// Minimize one dimensional quadratic over bounds
Real tauR(1);
Real valueR = minimize1D(tauR, lowerBoundR, upperBoundR, *reflectStep_);
/**************************************************************************/
/* CHOOSE STEP THAT GIVES MOST PREDICTED REDUCTION */
/**************************************************************************/
Real VALUE(0);
bool useCauchyPoint = (valueG < valueV);
if (useCauchyPoint) {
VALUE = valueG;
tiv.set(*cauchyScal_);
// Store unscaled step
step_->set(*cauchyStep_);
}
else {
VALUE = valueV;
tiv.scale(tauV);
// Store unscaled step
step_->set(v);
step_->scale(tauV);
}
bool useReflectStep = (valueR < VALUE);
if (useReflectStep) {
VALUE = valueR;
tiv.set(*reflectScal_);
tiv.scale(tauR);
// Store unscaled step
step_->set(*reflectStep_);
step_->scale(tauR);
}
/**************************************************************************/
/* ENSURE CHOSEN STEP IS STRICTLY FEASIBLE */
/**************************************************************************/
// Computed predicted reduction based on input step
if ( !isStrictlyFeasibleStep(tiv) ) {
Real snorm = step_->norm();
Real theta = std::max( stepBackMax_, static_cast<Real>(1) - stepBackScale_ * snorm);
tiv.scale(theta);
step_->scale(theta);
// Compute predicted reduction
pred_ = -value(*step_,tol);
}
else { // Theta is one
// Compute predicted reduction
pred_ = -VALUE;
}
// Compute update for actual reduction
applyC(*prim_, *step_);
sCs_ = static_cast<Real>(-0.5) * prim_->dot(*step_);
}
void updatePredictedReduction(Real &pred, const Vector<Real> &s) {
pred = pred_;
}
void updateActualReduction(Real &ared, const Vector<Real> &s) {
ared += sCs_;
}
const Teuchos::RCP<BoundConstraint<Real> > getBoundConstraint(void) const {
return bnd_;
}
private:
void getScalarBounds( Real &lowerBound, Real &upperBound, const Vector<Real> &p ) {
const Teuchos::RCP<const Vector<Real> > xc = TrustRegionModel<Real>::getIterate();
const Teuchos::RCP<const Vector<Real> > l = bnd_->getLowerVectorRCP();
const Teuchos::RCP<const Vector<Real> > u = bnd_->getUpperVectorRCP();
const Real one(1);
Real pnorm = p.norm();
// Define elementwise functions
class PruneNegative : public Elementwise::BinaryFunction<Real> {
private:
const Real val_;
public:
PruneNegative( const Real val ) : val_(val) {}
Real apply(const Real &x, const Real &y) const {
return (y < static_cast<Real>(0)) ? x/y : val_;
}
};
class PrunePositive : public Elementwise::BinaryFunction<Real> {
private:
const Real val_;
public:
PrunePositive( const Real val ) : val_(val) {}
Real apply(const Real &x, const Real &y) const {
return (y > static_cast<Real>(0)) ? x/y : val_;
}
};
// Max of (l-x)/p if p > 0
prim_->set(*l); prim_->axpy(-one,*xc);
prim_->applyBinary(PrunePositive(ROL_NINF<Real>()),p);
Real lowerBound1 = prim_->reduce(Elementwise::ReductionMax<Real>());
// Max of (u-x)/p if p < 0
prim_->set(*u); prim_->axpy(-one,*xc);
prim_->applyBinary(PruneNegative(ROL_NINF<Real>()),p);
Real lowerBound2 = prim_->reduce(Elementwise::ReductionMax<Real>());
// Lower bound
Real lowerBound3 = std::max(lowerBound1, lowerBound2);
// Min of (u-x)/p if p > 0
prim_->set(*u); prim_->axpy(-one,*xc);
prim_->applyBinary(PrunePositive(ROL_INF<Real>()),p);
Real upperBound1 = prim_->reduce(Elementwise::ReductionMin<Real>());
// Max of (l-x)/p if p < 0
prim_->set(*l); prim_->axpy(-one,*xc);
prim_->applyBinary(PruneNegative(ROL_INF<Real>()),p);
Real upperBound2 = prim_->reduce(Elementwise::ReductionMin<Real>());
// Upper bound
Real upperBound3 = std::min(upperBound1, upperBound2);
// Adjust for trust-region constraint
lowerBound = std::max(lowerBound3, -TRradius_/pnorm);
upperBound = std::min(upperBound3, TRradius_/pnorm);
}
Real minimize1D(Real &tau, const Real lowerBound, const Real upperBound, const Vector<Real> &p) {
const Teuchos::RCP<const Vector<Real> > gc = TrustRegionModel<Real>::getGradient();
Real tol = std::sqrt(ROL_EPSILON<Real>());
// Compute coefficients of one dimensional quadratic
hessVec(*hv_, p, p, tol);
Real c2 = static_cast<Real>(0.5) * hv_->dot(p.dual());
applyInverseD(*prim_, gc->dual());
Real c1 = prim_->dot(p);
// Minimize one dimensional quadratic over bounds
Real lval = (c2 * lowerBound + c1) * lowerBound;
Real rval = (c2 * upperBound + c1) * upperBound;
tau = (lval < rval) ? lowerBound : upperBound;
if (c2 > static_cast<Real>(0)) {
Real uncMin = static_cast<Real>(-0.5) * c1/c2;
tau = (uncMin > lowerBound && uncMin < upperBound) ? uncMin : tau;
}
// Return minimal function value
return (c2 * tau + c1) * tau;
}
Real computeCauchyPoint(void) {
// Set step = -inv(D) g
const Teuchos::RCP<const Vector<Real> > gc = TrustRegionModel<Real>::getGradient();
applyInverseD(*cauchyStep_, gc->dual());
cauchyStep_->scale(static_cast<Real>(-1));
// Scale Cauchy point
applyInverseD(*cauchyScal_, *cauchyStep_);
// Scalar bounds
Real lowerBound(ROL_NINF<Real>()), upperBound(ROL_INF<Real>());
getScalarBounds(lowerBound, upperBound, *cauchyScal_);
// Minimize 1D quadratic over bounds
Real tau(1), value(0);
value = minimize1D(tau, lowerBound, upperBound, *cauchyStep_);
// Scale Cauchy point and return minimal function value
cauchyStep_->scale(tau);
cauchyScal_->scale(tau);
return value;
}
void computeReflectiveStep(Vector<Real> &Rv, const Vector<Real> &v, const Vector<Real> &Dv) {
const Teuchos::RCP<const Vector<Real> > xc = TrustRegionModel<Real>::getIterate();
Real alpha = computeAlpha(Dv);
Rv.set(v);
class LowerBound : public Elementwise::BinaryFunction<Real> {
public:
Real apply( const Real &x, const Real &y ) const {
return (x == y) ? static_cast<Real>(-1) : static_cast<Real>(1);
}
};
prim_->set(*xc); prim_->axpy(alpha,Dv);
prim_->applyBinary(LowerBound(),*bnd_->getLowerVectorRCP());
Rv.applyBinary(mult_,*prim_);
class UpperBound : public Elementwise::BinaryFunction<Real> {
public:
Real apply( const Real &x, const Real &y ) const {
return (x == y) ? static_cast<Real>(-1) : static_cast<Real>(1);
}
};
prim_->set(*xc); prim_->axpy(alpha,Dv);
prim_->applyBinary(UpperBound(),*bnd_->getUpperVectorRCP());
Rv.applyBinary(mult_,*prim_);
}
void computeFullReflectiveStep(Vector<Real> &Rv, const Vector<Real> &v, const Vector<Real> &Dv) {
const Teuchos::RCP<const Vector<Real> > xc = TrustRegionModel<Real>::getIterate();
Rv.set(v);
class LowerBound : public Elementwise::BinaryFunction<Real> {
public:
Real apply( const Real &x, const Real &y ) const {
return (x < y) ? static_cast<Real>(-1) : static_cast<Real>(1);
}
};
prim_->set(*xc); prim_->plus(Dv);
prim_->applyBinary(LowerBound(),*bnd_->getLowerVectorRCP());
Rv.applyBinary(mult_,*prim_);
class UpperBound : public Elementwise::BinaryFunction<Real> {
public:
Real apply( const Real &x, const Real &y ) const {
return (x > y) ? static_cast<Real>(-1) : static_cast<Real>(1);
}
};
prim_->set(*xc); prim_->plus(Dv);
prim_->applyBinary(UpperBound(),*bnd_->getUpperVectorRCP());
Rv.applyBinary(mult_,*prim_);
}
Real computeAlpha( const Vector<Real> &d ) {
const Teuchos::RCP<const Vector<Real> > xc = TrustRegionModel<Real>::getIterate();
Teuchos::RCP<Vector<Real> > lx = xc->clone(), ux = xc->clone();
const Real one(1);
// Define elementwise functions
class SafeDivide : public Elementwise::BinaryFunction<Real> {
private:
const Real val_;
public:
SafeDivide( const Real val ) : val_(val) {}
Real apply(const Real &x, const Real &y) const {
const Real zero(0);
return (y == zero) ? val_ : x/y;
}
};
// (l - x) / d
lx->set(*bnd_->getLowerVectorRCP());
lx->axpy(-one, *xc);
lx->applyBinary(SafeDivide(ROL_INF<Real>()), d);
// (u - x) / d
ux->set(*bnd_->getUpperVectorRCP());
ux->axpy(-one, *xc);
ux->applyBinary(SafeDivide(ROL_INF<Real>()), d);
// max{ (l - x) / d, (u - x) / d }
lx->applyBinary(Elementwise::Max<Real>(),*ux);
// min{ max{ (l - x) / d, (u - x) / d } }
return lx->reduce(Elementwise::ReductionMin<Real>());
}
bool isStrictlyFeasibleStep( const Vector<Real> &d ) const {
const Teuchos::RCP<const Vector<Real> > xc = TrustRegionModel<Real>::getIterate();
class Greater : public Elementwise::BinaryFunction<Real> {
public:
Greater() {}
Real apply(const Real &x, const Real &y) const {
return (x > y) ? static_cast<Real>(1) : static_cast<Real>(0);
}
};
prim_->set(*xc); prim_->plus(d);
prim_->applyBinary(Greater(),*bnd_->getLowerVectorRCP());
Real lowerFeasible = prim_->reduce(Elementwise::ReductionMin<Real>());
class Lesser : public Elementwise::BinaryFunction<Real> {
public:
Lesser() {}
Real apply(const Real &x, const Real &y) const {
return (x < y) ? static_cast<Real>(1) : static_cast<Real>(0);
}
};
prim_->set(*xc); prim_->plus(d);
prim_->applyBinary(Lesser(),*bnd_->getUpperVectorRCP());
Real upperFeasible = prim_->reduce(Elementwise::ReductionMin<Real>());
return (upperFeasible * lowerFeasible > 0);
}
}; // class ColemanLiModel
}
#endif // ROL_COLEMANLIMODEL_HPP
|