/usr/include/trilinos/ROL_DiodeCircuit.hpp is in libtrilinos-rol-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 | #ifndef ROL_DIODECIRCUIT_HPP
#define ROL_DIODECIRCUIT_HPP
#include "ROL_Objective.hpp"
#include "ROL_StdVector.hpp"
#include "ROL_ScaledStdVector.hpp"
#include "ROL_BoundConstraint.hpp"
#include <iostream>
#include <fstream>
#include <string>
/** \file
\brief Contains definitions for the diode circuit problem.
\author Created by T. Takhtaganov, D. Ridzal, D. Kouri
*/
namespace ROL {
namespace ZOO {
/*!
\brief The diode circuit problem.
The diode circuit problem:
\f{eqnarray*}{
\min_{I_S,R_S} \,\, \frac{1}{2}\sum\limits_{n=1}^N (I_n-I_n^{meas})^2 \\
\text{s.t.}\;\;\begin{cases}c(I_S,R_S,I_1,V^{src}_1)=0\\ \dots \\c(I_S,R_S,I_N,V^{src}_N)=0\end{cases}
\f}
where
\f[c(I_S,R_S,I_n,V^{src}_n)=I_n - I_S\left(\exp\left(\frac{-I_n R_S+V^{src}_n}{V_{th}}\right)-1\right)\f].
*/
template<class Real>
class Objective_DiodeCircuit : public Objective<Real> {
typedef std::vector<Real> vector;
typedef Vector<Real> V;
typedef StdVector<Real> STDV;
typedef PrimalScaledStdVector<Real> PSV;
typedef DualScaledStdVector<Real> DSV;
typedef typename vector::size_type uint;
private:
/// Thermal voltage (constant)
Real Vth_;
/// Vector of measured currents in DC analysis (data)
Teuchos::RCP<std::vector<Real> > Imeas_;
/// Vector of source voltages in DC analysis (input)
Teuchos::RCP<std::vector<Real> > Vsrc_;
/// If true, use Lambert-W function to solve circuit, else use Newton's method.
bool lambertw_;
/// Percentage of noise to add to measurements; if 0.0 - no noise.
Real noise_;
/// If true, use adjoint gradient computation, else compute gradient using sensitivities
bool use_adjoint_;
/// 0 - use FD(with scaling),
/// 1 - use exact implementation (with second order derivatives),
/// 2 - use Gauss-Newton approximation (first order derivatives only)
int use_hessvec_;
public:
/*!
\brief A constructor generating data
Given thermal voltage, minimum and maximum values of source voltages and
a step size, values of Is and Rs generates vector of source voltages and
solves nonlinear diode equation to populate the vector of measured
currents, which is later used as data. If noise is nonzero, adds random
perturbation to data on the order of the magnitude of the components.
Sets the flag to use Lambert-W function or Newton's method to solve
circuit. Sets the flags to use adjoint gradient computation and one of
three Hessian-vector implementations.
---
*/
Objective_DiodeCircuit(Real Vth, Real Vsrc_min, Real Vsrc_max, Real Vsrc_step,
Real true_Is, Real true_Rs,
bool lambertw, Real noise,
bool use_adjoint, int use_hessvec)
: Vth_(Vth), lambertw_(lambertw), use_adjoint_(use_adjoint), use_hessvec_(use_hessvec) {
int n = (Vsrc_max-Vsrc_min)/Vsrc_step + 1;
Vsrc_ = Teuchos::rcp(new std::vector<Real>(n,0.0));
Imeas_ = Teuchos::rcp(new std::vector<Real>(n,0.0));
std::ofstream output ("Measurements.dat");
Real left = 0.0, right = 1.0;
// Generate problem data
if ( lambertw_ ) {
std::cout << "Generating data using Lambert-W function." << std::endl;
}
else {
std::cout << "Generating data using Newton's method." << std::endl;
}
for ( int i = 0; i < n; i++ ) {
(*Vsrc_)[i] = Vsrc_min+i*Vsrc_step;
if (lambertw_) {
(*Imeas_)[i] = lambertWCurrent(true_Is,true_Rs,(*Vsrc_)[i]);
}
else {
Real I0 = 1.e-12; // initial guess for Newton
(*Imeas_)[i] = Newton(I0,Vsrc_min+i*Vsrc_step,true_Is,true_Rs);
}
if ( noise > 0.0 ) {
(*Imeas_)[i] += noise*pow(10,(int)log10((*Imeas_)[i]))*random(left, right);
}
// Write generated data into file
if( output.is_open() ) {
output << std::setprecision(8) << std::scientific << (*Vsrc_)[i] << " " << (*Imeas_)[i] << "\n";
}
}
output.close();
}
/*!
\brief A constructor using data from given file
Given thermal voltage and a file with two columns - one for source
voltages, another for corresponding currents - populates vectors of source
voltages and measured currents. If noise is nonzero, adds random
perturbation to data on the order of the magnitude of the components. Sets
the flag to use Lambert-W function or Newton's method to solve circuit.
Sets the flags to use adjoint gradient computation and one of three
Hessian-vector implementations.
---
*/
Objective_DiodeCircuit(Real Vth, std::ifstream& input_file,
bool lambertw, Real noise,
bool use_adjoint, int use_hessvec)
: Vth_(Vth), lambertw_(lambertw), use_adjoint_(use_adjoint), use_hessvec_(use_hessvec) {
std::string line;
int dim = 0;
for( int k = 0; std::getline(input_file,line); ++k ) {
dim = k;
} // count number of lines
input_file.clear(); // reset to beginning of file
input_file.seekg(0,std::ios::beg);
Vsrc_ = Teuchos::rcp(new std::vector<Real>(dim,0.0));
Imeas_ = Teuchos::rcp(new std::vector<Real>(dim,0.0));
Real Vsrc, Imeas;
std::cout << "Using input file to generate data." << "\n";
for( int i = 0; i < dim; i++ ){
input_file >> Vsrc;
input_file >> Imeas;
(*Vsrc_)[i] = Vsrc;
(*Imeas_)[i] = Imeas;
}
input_file.close();
}
//! Change the method for solving the circuit if needed
void set_method(bool lambertw){
lambertw_ = lambertw;
}
//! Solve circuit given optimization parameters Is and Rs
void solve_circuit(Vector<Real> &I, const Vector<Real> &S){
using Teuchos::RCP;
RCP<vector> Ip = getVector(I);
RCP<const vector> Sp = getVector(S);
uint n = Ip->size();
if ( lambertw_ ) {
// Using Lambert-W function
Real lambval;
for ( uint i = 0; i < n; i++ ) {
lambval = lambertWCurrent((*Sp)[0],(*Sp)[1],(*Vsrc_)[i]);
(*Ip)[i] = lambval;
}
}
else{
// Using Newton's method
Real I0 = 1.e-12; // Initial guess for Newton
for ( uint i = 0; i < n; i++ ) {
(*Ip)[i] = Newton(I0,(*Vsrc_)[i],(*Sp)[0],(*Sp)[1]);
}
}
}
/*!
\brief Evaluate objective function
\f$\frac{1}{2}\sum\limits_{i=1}^{N}(I_i-I^{meas}_i)^2\f$
---
*/
Real value(const Vector<Real> &S, Real &tol){
using Teuchos::RCP; using Teuchos::rcp;
RCP<const vector> Sp = getVector(S);
uint n = Imeas_->size();
STDV I( rcp( new vector(n,0.0) ) );
RCP<vector> Ip = getVector(I);
// Solve state equation
solve_circuit(I,S);
Real val = 0;
for ( uint i = 0; i < n; i++ ) {
val += ((*Ip)[i]-(*Imeas_)[i])*((*Ip)[i]-(*Imeas_)[i]);
}
return val/2.0;
}
//! Compute the gradient of the reduced objective function either using adjoint or using sensitivities
void gradient(Vector<Real> &g, const Vector<Real> &S, Real &tol){
using Teuchos::RCP; using Teuchos::rcp;
RCP<vector> gp = getVector(g);
RCP<const vector> Sp = getVector(S);
uint n = Imeas_->size();
STDV I( rcp( new vector(n,0.0) ) );
RCP<vector> Ip = getVector(I);
// Solve state equation
solve_circuit(I,S);
if ( use_adjoint_ ) {
// Compute the gradient of the reduced objective function using adjoint computation
STDV lambda( rcp( new vector(n,0.0) ) );
RCP<vector> lambdap = getVector(lambda);
// Solve adjoint equation
solve_adjoint(lambda,I,S);
// Compute gradient
(*gp)[0] = 0.0; (*gp)[1] = 0.0;
for ( uint i = 0; i < n; i++ ) {
(*gp)[0] += diodeIs((*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1])*(*lambdap)[i];
(*gp)[1] += diodeRs((*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1])*(*lambdap)[i];
}
}
else {
// Compute the gradient of the reduced objective function using sensitivities
STDV sensIs( rcp( new vector(n,0.0) ) );
STDV sensRs( rcp( new vector(n,0.0) ) );
// Solve sensitivity equations
solve_sensitivity_Is(sensIs,I,S);
solve_sensitivity_Rs(sensRs,I,S);
RCP<vector> sensIsp = getVector(sensIs);
RCP<vector> sensRsp = getVector(sensRs);
// Write sensitivities into file
std::ofstream output ("Sensitivities.dat");
for ( uint k = 0; k < n; k++ ) {
if ( output.is_open() ) {
output << std::scientific << (*sensIsp)[k] << " " << (*sensRsp)[k] << "\n";
}
}
output.close();
// Compute gradient
(*gp)[0] = 0.0; (*gp)[1] = 0.0;
for( uint i = 0; i < n; i++ ) {
(*gp)[0] += ((*Ip)[i]-(*Imeas_)[i])*(*sensIsp)[i];
(*gp)[1] += ((*Ip)[i]-(*Imeas_)[i])*(*sensRsp)[i];
}
}
}
/*!
\brief Compute the Hessian-vector product of the reduced objective function
Hessian-times-vector computation.
---
*/
void hessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &S, Real &tol ){
using Teuchos::RCP; using Teuchos::rcp;
if ( use_hessvec_ == 0 ) {
Objective<Real>::hessVec(hv, v, S, tol);
}
else if ( use_hessvec_ == 1 ) {
RCP<vector> hvp = getVector(hv);
RCP<const vector> vp = getVector(v);
RCP<const vector> Sp = getVector(S);
uint n = Imeas_->size();
STDV I( rcp( new vector(n,0.0) ) );
RCP<vector> Ip = getVector(I);
// Solve state equation
solve_circuit(I,S);
STDV lambda( rcp( new vector(n,0.0) ) );
RCP<vector> lambdap = getVector(lambda);
// Solve adjoint equation
solve_adjoint(lambda,I,S);
STDV w( rcp( new vector(n,0.0) ) );
RCP<vector> wp = getVector(w);
// Solve state sensitivity equation
for ( uint i = 0; i < n; i++ ){
(*wp)[i] = ( (*vp)[0] * diodeIs( (*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1] )
+ (*vp)[1] * diodeRs( (*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1] ) )
/ diodeI((*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1]);
}
STDV p( rcp( new vector(n,0.0) ) );
RCP<vector> pp = getVector(p);
// Solve for p
for ( uint j = 0; j < n; j++ ) {
(*pp)[j] = ( (*wp)[j] + (*lambdap)[j] * diodeII( (*Ip)[j],(*Vsrc_)[j],(*Sp)[0],(*Sp)[1] )
* (*wp)[j] - (*lambdap)[j] * diodeIIs( (*Ip)[j],(*Vsrc_)[j],(*Sp)[0],(*Sp)[1] )
* (*vp)[0] - (*lambdap)[j] * diodeIRs( (*Ip)[j],(*Vsrc_)[j],(*Sp)[0],(*Sp)[1] )
* (*vp)[1] ) / diodeI( (*Ip)[j],(*Vsrc_)[j],(*Sp)[0],(*Sp)[1] );
}
// Assemble Hessian-vector product
(*hvp)[0] = 0.0;(*hvp)[1] = 0.0;
for ( uint k = 0; k < n; k++ ) {
(*hvp)[0] += diodeIs( (*Ip)[k],(*Vsrc_)[k],(*Sp)[0],(*Sp)[1] )* (*pp)[k]
- (*lambdap)[k] * (*wp)[k] * diodeIIs( (*Ip)[k],(*Vsrc_)[k],(*Sp)[0],(*Sp)[1] )
+ (*lambdap)[k] * (*vp)[0] * diodeIsIs( (*Ip)[k],(*Vsrc_)[k],(*Sp)[0],(*Sp)[1] )
+ (*lambdap)[k] * (*vp)[1] * diodeIsRs( (*Ip)[k],(*Vsrc_)[k],(*Sp)[0],(*Sp)[1] );
(*hvp)[1] += diodeRs( (*Ip)[k],(*Vsrc_)[k],(*Sp)[0],(*Sp)[1] ) * (*pp)[k]
- (*lambdap)[k] * (*wp)[k] * diodeIRs( (*Ip)[k],(*Vsrc_)[k],(*Sp)[0],(*Sp)[1] )
+ (*lambdap)[k] * (*vp)[0] * diodeIsRs( (*Ip)[k],(*Vsrc_)[k],(*Sp)[0],(*Sp)[1] )
+ (*lambdap)[k] * (*vp)[1] * diodeRsRs( (*Ip)[k],(*Vsrc_)[k],(*Sp)[0],(*Sp)[1] );
}
}
else if ( use_hessvec_ == 2 ) {
//Gauss-Newton approximation
RCP<vector> hvp = getVector(hv);
RCP<const vector> vp = getVector(v);
RCP<const vector> Sp = getVector(S);
uint n = Imeas_->size();
STDV I( rcp( new vector(n,0.0) ) );
RCP<vector> Ip = getVector(I);
// Solve state equation
solve_circuit(I,S);
// Compute sensitivities
STDV sensIs( rcp( new vector(n,0.0) ) );
STDV sensRs( rcp( new vector(n,0.0) ) );
// Solve sensitivity equations
solve_sensitivity_Is(sensIs,I,S);
solve_sensitivity_Rs(sensRs,I,S);
RCP<vector> sensIsp = getVector(sensIs);
RCP<vector> sensRsp = getVector(sensRs);
// Compute approximate Hessian
Real H11 = 0.0; Real H12 = 0.0; Real H22 = 0.0;
for ( uint k = 0; k < n; k++ ) {
H11 += (*sensIsp)[k]*(*sensIsp)[k];
H12 += (*sensIsp)[k]*(*sensRsp)[k];
H22 += (*sensRsp)[k]*(*sensRsp)[k];
}
// Compute approximate Hessian-times-vector
(*hvp)[0] = H11*(*vp)[0] + H12*(*vp)[1];
(*hvp)[1] = H12*(*vp)[0] + H22*(*vp)[1];
}
else {
ROL::Objective<Real>::hessVec( hv, v, S, tol ); // Use parent class function
}
}
/*!
\brief Generate data to plot objective function
Generates a file with three columns - Is value, Rs value, objective value. To plot with gnuplot type:
gnuplot;
set dgrid3d 100,100;
set hidden3d;
splot "Objective.dat" u 1:2:3 with lines;
---
*/
void generate_plot(Real Is_lo, Real Is_up, Real Is_step, Real Rs_lo, Real Rs_up, Real Rs_step){
Teuchos::RCP<std::vector<Real> > S_rcp = Teuchos::rcp(new std::vector<Real>(2,0.0) );
StdVector<Real> S(S_rcp);
std::ofstream output ("Objective.dat");
Real Is = 0.0;
Real Rs = 0.0;
Real val = 0.0;
Real tol = 1.e-16;
int n = (Is_up-Is_lo)/Is_step + 1;
int m = (Rs_up-Rs_lo)/Rs_step + 1;
for ( int i = 0; i < n; i++ ) {
Is = Is_lo + i*Is_step;
for ( int j = 0; j < m; j++ ) {
Rs = Rs_lo + j*Rs_step;
(*S_rcp)[0] = Is;
(*S_rcp)[1] = Rs;
val = value(S,tol);
if ( output.is_open() ) {
output << std::scientific << Is << " " << Rs << " " << val << std::endl;
}
}
}
output.close();
}
private:
Teuchos::RCP<const vector> getVector( const V& x ) {
using Teuchos::dyn_cast; using Teuchos::getConst;
try {
return dyn_cast<const STDV>(getConst(x)).getVector();
}
catch (std::exception &e) {
try {
return dyn_cast<const PSV>(getConst(x)).getVector();
}
catch (std::exception &e) {
return dyn_cast<const DSV>(getConst(x)).getVector();
}
}
}
Teuchos::RCP<vector> getVector( V& x ) {
using Teuchos::dyn_cast;
try {
return dyn_cast<STDV>(x).getVector();
}
catch (std::exception &e) {
try {
return dyn_cast<PSV>(x).getVector();
}
catch (std::exception &e) {
return dyn_cast<DSV>(x).getVector();
}
}
}
Real random(const Real left, const Real right) const {
return (Real)rand()/(Real)RAND_MAX * (right - left) + left;
}
/*!
\brief Diode equation
Diode equation formula:
\f$
I-I_S\left(\exp\left(\frac{V_{src}-IR_S}{V_{th}}\right)-1\right)
\f$.
---
*/
Real diode(const Real I, const Real Vsrc, const Real Is, const Real Rs){
return I-Is*(exp((Vsrc-I*Rs)/Vth_)-1);
}
//! Derivative of diode equation wrt I
Real diodeI(const Real I, const Real Vsrc, const Real Is, const Real Rs){
return 1+Is*exp((Vsrc-I*Rs)/Vth_)*(Rs/Vth_);
}
//! Derivative of diode equation wrt Is
Real diodeIs(const Real I, const Real Vsrc, const Real Is, const Real Rs){
return 1-exp((Vsrc-I*Rs)/Vth_);
}
//! Derivative of diode equation wrt Rs
Real diodeRs(const Real I, const Real Vsrc, const Real Is, const Real Rs){
return Is*exp((Vsrc-I*Rs)/Vth_)*(I/Vth_);
}
//! Second derivative of diode equation wrt I^2
Real diodeII(const Real I, const Real Vsrc, const Real Is, const Real Rs){
return -Is*exp((Vsrc-I*Rs)/Vth_)*(Rs/Vth_)*(Rs/Vth_);
}
//! Second derivative of diode equation wrt I and Is
Real diodeIIs(const Real I, const Real Vsrc, const Real Is, const Real Rs){
return exp((Vsrc-I*Rs)/Vth_)*(Rs/Vth_);
}
//! Second derivative of diode equation wrt I and Rs
Real diodeIRs(const Real I, const Real Vsrc, const Real Is, const Real Rs){
return (Is/Vth_)*exp((Vsrc-I*Rs)/Vth_)*(1-(I*Rs)/Vth_);
}
//! Second derivative of diode equation wrt Is^2
Real diodeIsIs(const Real I, const Real Vsrc, const Real Is, const Real Rs){
return 0;
}
//! Second derivative of diode equation wrt Is and Rs
Real diodeIsRs(const Real I, const Real Vsrc, const Real Is, const Real Rs){
return exp((Vsrc-I*Rs)/Vth_)*(I/Vth_);
}
//! Second derivative of diode equation wrt Rs^2
Real diodeRsRs(const Real I, const Real Vsrc, const Real Is, const Real Rs){
return -Is*exp((Vsrc-I*Rs)/Vth_)*(I/Vth_)*(I/Vth_);
}
/*!
\brief Newton's method with line search
Solves the diode equation for the current using Newton's method.
---
*/
Real Newton(const Real I, const Real Vsrc, const Real Is, const Real Rs){
Real EPS = 1.e-16;
Real TOL = 1.e-13;
int MAXIT = 200;
Real IN = I;
Real fval = diode(IN,Vsrc,Is,Rs);
Real dfval = 0.0;
Real IN_tmp = 0.0;
Real fval_tmp = 0.0;
Real alpha = 1.0;
for ( int i = 0; i < MAXIT; i++ ) {
if ( std::abs(fval) < TOL ) {
// std::cout << "converged with |fval| = " << std::abs(fval) << " and TOL = " << TOL << "\n";
break;
}
dfval = diodeI(IN,Vsrc,Is,Rs);
if( std::abs(dfval) < EPS ){
std::cout << "denominator is too small" << std::endl;
break;
}
alpha = 1.0;
IN_tmp = IN - alpha*fval/dfval;
fval_tmp = diode(IN_tmp,Vsrc,Is,Rs);
while ( std::abs(fval_tmp) >= (1.0-1.e-4*alpha)*std::abs(fval) ) {
alpha /= 2.0;
IN_tmp = IN - alpha*fval/dfval;
fval_tmp = diode(IN_tmp,Vsrc,Is,Rs);
if ( alpha < std::sqrt(EPS) ) {
// std::cout << "Step tolerance met\n";
break;
}
}
IN = IN_tmp;
fval = fval_tmp;
// if ( i == MAXIT-1){
// std::cout << "did not converge " << std::abs(fval) << "\n";
// }
}
return IN;
}
/*!
\brief Lambert-W function for diodes
Function : DeviceSupport::lambertw
Purpose : provides a lambert-w function for diodes and BJT's.
Special Notes :
Purpose. Evaluate principal branch of Lambert W function at x.
w = w(x) is the value of Lambert's function.
ierr = 0 indicates a safe return.
ierr = 1 if x is not in the domain.
ierr = 2 if the computer arithmetic contains a bug.
xi may be disregarded (it is the error).
Prototype: void lambertw( Real, Real, int, Real);
Reference:
T.C. Banwell
Bipolar transistor circuit analysis using the Lambert W-function,
IEEE Transactions on Circuits and Systems I: Fundamental Theory
and Applications
vol. 47, pp. 1621-1633, Nov. 2000.
Scope : public
Creator : David Day, SNL
Creation Date : 04/16/02
---
*/
void lambertw(Real x, Real &w, int &ierr, Real &xi){
int i = 0, maxit = 10;
const Real turnpt = -exp(-1.), c1 = 1.5, c2 = .75;
Real r, r2, r3, s, mach_eps, relerr = 1., diff;
mach_eps = 2.e-15; // float:2e-7
ierr = 0;
if ( x > c1 ) {
w = c2*log(x);
xi = log( x/ w) - w;
}
else {
if ( x >= 0.0 ) {
w = x;
if ( x == 0. ) {
return;
}
if ( x < (1-c2) ) {
w = x*(1.-x + c1*x*x);
}
xi = - w;
}
else {
if ( x >= turnpt ){
if ( x > -0.2 ){
w = x*(1.0-x + c1*x*x);
xi = log(1.0-x + c1*x*x) - w;
}
else {
diff = x-turnpt;
if ( diff < 0.0 ) {
diff = -diff;
}
w = -1 + sqrt(2.0*exp(1.))*sqrt(x-turnpt);
if ( diff == 0.0 ) {
return;
}
xi = log( x/ w) - w;
}
}
else {
ierr = 1; // x is not in the domain.
w = -1.0;
return;
}
}
}
while ( relerr > mach_eps && i < maxit ) {
r = xi/(w+1.0); //singularity at w=-1
r2 = r*r;
r3 = r2*r;
s = 6.*(w+1.0)*(w+1.0);
w = w * ( 1.0 + r + r2/(2.0*( w+1.0)) - (2. * w -1.0)*r3/s );
w = ((w*x < 0.0) ? -w : w);
xi = log( x/ w) - w;
relerr = ((x > 1.0) ? xi/w : xi);
relerr = ((relerr < 0.0) ? -relerr : relerr);
++i;
}
ierr = ((i == maxit) ? 2 : ierr);
}
/*!
\brief Find currents using Lambert-W function.
Reference:
T.C. Banwell
Bipolar transistor circuit analysis using the Lambert W-function,
IEEE Transactions on Circuits and Systems I: Fundamental Theory
and Applications
vol. 47, pp. 1621-1633, Nov. 2000.
---
*/
Real lambertWCurrent(Real Is, Real Rs, Real Vsrc){
Real arg1 = (Vsrc + Is*Rs)/Vth_;
Real evd = exp(arg1);
Real lambWArg = Is*Rs*evd/Vth_;
Real lambWReturn = 0.0;
Real lambWError = 0.0;
int ierr = 0;
lambertw(lambWArg, lambWReturn, ierr, lambWError);
if ( ierr == 1 ) {
std::cout << "LambertW error: argument is not in the domain" << std::endl;
return -1.0;
}
if ( ierr == 2 ) {
std::cout << "LambertW error: BUG!" << std::endl;
}
Real Id = -Is+Vth_*(lambWReturn)/Rs;
//Real Gd = lambWReturn / ((1 + lambWReturn)*RS);
return Id;
}
/*!
\brief Solve the adjoint equation
\f$\lambda_i = \frac{(I^{meas}_i-I_i)}{\frac{\partial c}{\partial I}(I_i,V^{src}_i,I_S,R_S)}\f$
---
*/
void solve_adjoint(Vector<Real> &lambda, const Vector<Real> &I, const Vector<Real> &S){
using Teuchos::RCP;
RCP<vector> lambdap = getVector(lambda);
RCP<const vector> Ip = getVector(I);
RCP<const vector> Sp = getVector(S);
uint n = Ip->size();
for ( uint i = 0; i < n; i++ ){
(*lambdap)[i] = ((*Imeas_)[i]-(*Ip)[i])
/diodeI((*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1]);
}
}
/*!
\brief Solve the sensitivity equation wrt Is
Computes sensitivity \f[\frac{\partial I}{\partial Is}\f]
---
*/
void solve_sensitivity_Is(Vector<Real> &sens, const Vector<Real> &I, const Vector<Real> &S){
using Teuchos::RCP;
RCP<vector> sensp = getVector(sens);
RCP<const vector> Ip = getVector(I);
RCP<const vector> Sp = getVector(S);
uint n = Ip->size();
for ( uint i = 0; i < n; i++ ) {
(*sensp)[i] = -diodeIs((*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1])
/diodeI((*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1]);
}
}
/*!
\brief Solve the sensitivity equation wrt Rs
Computes sensitivity \f[\frac{\partial I}{\partial Rs}\f]
---
*/
void solve_sensitivity_Rs(Vector<Real> &sens, const Vector<Real> &I, const Vector<Real> &S){
using Teuchos::RCP;
RCP<vector> sensp = getVector(sens);
RCP<const vector> Ip = getVector(I);
RCP<const vector> Sp = getVector(S);
uint n = Ip->size();
for ( uint i = 0; i < n; i++ ) {
(*sensp)[i] = -diodeRs((*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1])
/diodeI((*Ip)[i],(*Vsrc_)[i],(*Sp)[0],(*Sp)[1]);
}
}
}; // class Objective_DiodeCircuit
// template<class Real>
// void getDiodeCircuit( Teuchos::RCP<Objective<Real> > &obj, Vector<Real> &x0, Vector<Real> &x ) {
// // Cast Initial Guess and Solution Vectors
// Teuchos::RCP<std::vector<Real> > x0p =
// Teuchos::rcp_const_cast<std::vector<Real> >((Teuchos::dyn_cast<PrimalScaledStdVector<Real> >(x0)).getVector());
// Teuchos::RCP<std::vector<Real> > xp =
// Teuchos::rcp_const_cast<std::vector<Real> >((Teuchos::dyn_cast<PrimalScaledStdVector<Real> >(x)).getVector());
// int n = xp->size();
// // Resize Vectors
// n = 2;
// x0p->resize(n);
// xp->resize(n);
// // Instantiate Objective Function
// obj = Teuchos::rcp( new Objective_DiodeCircuit<Real> (0.02585,0.0,1.0,1.e-2));
// //ROL::Objective_DiodeCircuit<Real> obj(0.02585,0.0,1.0,1.e-2);
// // Get Initial Guess
// (*x0p)[0] = 1.e-13;
// (*x0p)[1] = 0.2;
// // Get Solution
// (*xp)[0] = 1.e-12;
// (*xp)[1] = 0.25;
// }
} //end namespace ZOO
} //end namespace ROL
#endif
|