/usr/include/trilinos/ROL_ExpectationQuad.hpp is in libtrilinos-rol-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_EXPECTATIONQUAD_HPP
#define ROL_EXPECTATIONQUAD_HPP
#include "ROL_RiskVector.hpp"
#include "ROL_RiskMeasure.hpp"
#include "ROL_Types.hpp"
/** @ingroup risk_group
\class ROL::ExpectationQuad
\brief Provides a general interface for risk measures generated through
the expectation risk quadrangle.
The expectation risk quadrangle is a specialization of the general
risk quadrangle that provides a rigorous connection between risk-averse
optimization and statistical estimation. The risk quadrangle provides
fundamental relationships between measures of risk, regret, error and
deviation. An expectation risk quadrangle is defined through scalar
regret and error functions. The scalar regret function,
\f$v:\mathbb{R}\to(-\infty,\infty]\f$, must be proper, closed, convex
and satisfy \f$v(0)=0\f$ and \f$v(x) > x\f$ for all \f$x\neq 0\f$.
Similarly, the scalar error function,
\f$e:\mathbb{R}\to[0,\infty]\f$, must be proper, closed, convex
and satisfy \f$e(0)=0\f$ and \f$e(x) > 0\f$ for all \f$x\neq 0\f$.
\f$v\f$ and \f$e\f$ are obtained from one another through the relations
\f[
v(x) = e(x) + x \quad\text{and}\quad e(x) = v(x) - x.
\f]
Given \f$v\f$ (or equivalently \f$e\f$), the associated risk measure
is
\f[
\mathcal{R}(X) = \inf_{t\in\mathbb{R}} \left\{
t + \mathbb{E}\left[v(X-t)\right]
\right\}.
\f]
In general, \f$\mathcal{R}\f$ is convex and translation equivariant.
Moreover, \f$\mathcal{R}\f$ is monotonic if \f$v\f$ is increasing
and \f$\mathcal{R}\f$ is positive homogeneous if \f$v\f$ is.
ROL implements this by augmenting the optimization vector \f$x_0\f$ with
the parameter \f$t\f$, then minimizes jointly for \f$(x_0,t)\f$.
*/
namespace ROL {
template<class Real>
class ExpectationQuad : public RiskMeasure<Real> {
private:
Teuchos::RCP<Vector<Real> > dualVector_;
Real xstat_;
Real vstat_;
bool firstReset_;
public:
ExpectationQuad(void) : RiskMeasure<Real>(), xstat_(0), vstat_(0), firstReset_(true) {}
/** \brief Evaluate the scalar regret function at x.
@param[in] x is the scalar input
@param[in] deriv is the derivative order
This function returns \f$v(x)\f$ or a derivative of \f$v(x)\f$.
*/
virtual Real regret(Real x, int deriv = 0) = 0;
/** \brief Run default derivative tests for the scalar regret function.
*/
virtual void checkRegret(void) {
Real zero(0), half(0.5), two(2), one(1), oem3(1.e-3), fem4(5.e-4), p1(0.1);
// Check v(0) = 0
Real x = zero;
Real vx = regret(x,0);
std::cout << std::right << std::setw(20) << "CHECK REGRET: v(0) = 0? \n";
std::cout << std::right << std::setw(20) << "v(0)" << "\n";
std::cout << std::scientific << std::setprecision(11) << std::right
<< std::setw(20) << std::abs(vx)
<< "\n";
std::cout << "\n";
// Check v(x) > x
Real scale = two;
std::cout << std::right << std::setw(20) << "CHECK REGRET: x < v(x) for |x| > 0? \n";
std::cout << std::right << std::setw(20) << "x"
<< std::right << std::setw(20) << "v(x)"
<< "\n";
for (int i = 0; i < 10; i++) {
x = scale*(Real)rand()/(Real)RAND_MAX - scale*half;
vx = regret(x,0);
std::cout << std::scientific << std::setprecision(11) << std::right
<< std::setw(20) << x
<< std::setw(20) << vx
<< "\n";
scale *= two;
}
std::cout << "\n";
// Check v(x) is convex
Real y = zero;
Real vy = zero;
Real z = zero;
Real vz = zero;
Real l = zero;
scale = two;
std::cout << std::right << std::setw(20) << "CHECK REGRET: v(x) is convex? \n";
std::cout << std::right << std::setw(20) << "v(l*x+(1-l)*y)"
<< std::setw(20) << "l*v(x)+(1-l)*v(y)"
<< "\n";
for (int i = 0; i < 10; i++) {
x = scale*(Real)rand()/(Real)RAND_MAX - scale*half;
vx = regret(x,0);
y = scale*(Real)rand()/(Real)RAND_MAX - scale*half;
vy = regret(y,0);
l = (Real)rand()/(Real)RAND_MAX;
z = l*x + (one-l)*y;
vz = regret(z,0);
std::cout << std::scientific << std::setprecision(11) << std::right
<< std::setw(20) << vz
<< std::setw(20) << l*vx + (one-l)*vy
<< "\n";
scale *= two;
}
std::cout << "\n";
// Check v'(x)
x = oem3*(Real)rand()/(Real)RAND_MAX - fem4;
vx = regret(x,0);
Real dv = regret(x,1);
Real t = one;
Real diff = zero;
Real err = zero;
std::cout << std::right << std::setw(20) << "CHECK REGRET: v'(x) is correct? \n";
std::cout << std::right << std::setw(20) << "t"
<< std::setw(20) << "v'(x)"
<< std::setw(20) << "(v(x+t)-v(x))/t"
<< std::setw(20) << "Error"
<< "\n";
for (int i = 0; i < 13; i++) {
y = x + t;
vy = regret(y,0);
diff = (vy-vx)/t;
err = std::abs(diff-dv);
std::cout << std::scientific << std::setprecision(11) << std::right
<< std::setw(20) << t
<< std::setw(20) << dv
<< std::setw(20) << diff
<< std::setw(20) << err
<< "\n";
t *= p1;
}
std::cout << "\n";
// Check v''(x)
x = oem3*(Real)rand()/(Real)RAND_MAX - fem4;
vx = regret(x,1);
dv = regret(x,2);
t = one;
diff = zero;
err = zero;
std::cout << std::right << std::setw(20) << "CHECK REGRET: v''(x) is correct? \n";
std::cout << std::right << std::setw(20) << "t"
<< std::setw(20) << "v''(x)"
<< std::setw(20) << "(v'(x+t)-v'(x))/t"
<< std::setw(20) << "Error"
<< "\n";
for (int i = 0; i < 13; i++) {
y = x + t;
vy = regret(y,1);
diff = (vy-vx)/t;
err = std::abs(diff-dv);
std::cout << std::scientific << std::setprecision(11) << std::right
<< std::setw(20) << t
<< std::setw(20) << dv
<< std::setw(20) << diff
<< std::setw(20) << err
<< "\n";
t *= p1;
}
std::cout << "\n";
}
void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x) {
RiskMeasure<Real>::reset(x0,x);
xstat_ = Teuchos::dyn_cast<const RiskVector<Real> >(
Teuchos::dyn_cast<const Vector<Real> >(x)).getStatistic(0);
if (firstReset_) {
dualVector_ = (x0->dual()).clone();
firstReset_ = false;
}
dualVector_->zero();
}
void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x,
Teuchos::RCP<Vector<Real> > &v0, const Vector<Real> &v) {
reset(x0,x);
v0 = Teuchos::rcp_const_cast<Vector<Real> >(Teuchos::dyn_cast<const RiskVector<Real> >(
Teuchos::dyn_cast<const Vector<Real> >(v)).getVector());
vstat_ = Teuchos::dyn_cast<const RiskVector<Real> >(
Teuchos::dyn_cast<const Vector<Real> >(v)).getStatistic(0);
}
void update(const Real val, const Real weight) {
Real r = regret(val-xstat_,0);
RiskMeasure<Real>::val_ += weight * r;
}
void update(const Real val, const Vector<Real> &g, const Real weight) {
Real r = regret(val-xstat_,1);
RiskMeasure<Real>::val_ -= weight * r;
RiskMeasure<Real>::g_->axpy(weight*r,g);
}
void update(const Real val, const Vector<Real> &g, const Real gv, const Vector<Real> &hv,
const Real weight) {
Real r1 = regret(val-xstat_,1);
Real r2 = regret(val-xstat_,2);
RiskMeasure<Real>::val_ += weight * r2 * (vstat_ - gv);
RiskMeasure<Real>::hv_->axpy(weight*r2*(gv-vstat_),g);
RiskMeasure<Real>::hv_->axpy(weight*r1,hv);
}
Real getValue(SampleGenerator<Real> &sampler) {
Real val = RiskMeasure<Real>::val_, gval(0);
sampler.sumAll(&val,&gval,1);
gval += xstat_;
return gval;
}
void getGradient(Vector<Real> &g, SampleGenerator<Real> &sampler) {
RiskVector<Real> &gs = Teuchos::dyn_cast<RiskVector<Real> >(Teuchos::dyn_cast<Vector<Real> >(g));
Real stat = RiskMeasure<Real>::val_, gstat(0), one(1);
sampler.sumAll(&stat,&gstat,1);
gstat += one;
gs.setStatistic(gstat);
sampler.sumAll(*(RiskMeasure<Real>::g_),*dualVector_);
gs.setVector(*dualVector_);
}
void getHessVec(Vector<Real> &hv, SampleGenerator<Real> &sampler) {
RiskVector<Real> &hs = Teuchos::dyn_cast<RiskVector<Real> >(Teuchos::dyn_cast<Vector<Real> >(hv));
Real stat = RiskMeasure<Real>::val_, gstat(0);
sampler.sumAll(&stat,&gstat,1);
hs.setStatistic(gstat);
sampler.sumAll(*(RiskMeasure<Real>::hv_),*dualVector_);
hs.setVector(*dualVector_);
}
};
}
#endif
|