/usr/include/trilinos/ROL_FDivergence.hpp is in libtrilinos-rol-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_FDIVERGENCE_HPP
#define ROL_FDIVERGENCE_HPP
#include "ROL_RiskVector.hpp"
#include "ROL_RiskMeasure.hpp"
#include "ROL_Types.hpp"
/** @ingroup risk_group
\class ROL::FDivergence
\brief Provides a general interface for the F-divergence distributionally robust
expectation.
This class defines a risk measure \f$\mathcal{R}\f$ which arises in distributionally
robust stochastic programming. \f$\mathcal{R}\f$ is given by
\f[
\mathcal{R}(X) = \sup_{\vartheta\in\mathfrak{A}}
\mathbb{E}[\vartheta X]
\f]
where \f$\mathfrak{A}\f$ is called the ambiguity (or uncertainty) set and
is defined by a constraint on the F-divergence, i.e.,
\f[
\mathfrak{A} = \{\vartheta\in\mathcal{X}^*\,:\,
\mathbb{E}[\vartheta] = 1,\; \vartheta \ge 0,\;\text{and}\;
\mathbb{E}[F(\vartheta)] \le \epsilon\}
\f]
where \f$F:\mathbb{R}\to[0,\infty]\f$ convex, lower semicontinuous and satisfies
\f$F(1) = 1\f$ and \f$F(x) = \infty\f$ for \f$x < 0\f$.
\f$\mathcal{R}\f$ is a law-invariant, coherent risk measure. Moreover, by a
duality argument, \f$\mathcal{R}\f$ can be reformulated as
\f[
\mathcal{R}(X) = \inf_{\lambda > 0,\,\mu}\left\{
\lambda \epsilon + \mu + \mathbb{E}\left[
(\lambda F)^*(X-\mu)\right]\right\}.
\f]
Here, \f$(\lambda F)^*\f$ denotes the Legendre-Fenchel transformation of
\f$(\lambda F)\f$.
ROL implements this by augmenting the optimization vector \f$x_0\f$ with
the parameter \f$(\lambda,\mu)\f$, then minimizes jointly for
\f$(x_0,\lambda,\mu)\f$.
*/
namespace ROL {
template<class Real>
class FDivergence : public RiskMeasure<Real> {
private:
Real thresh_;
Teuchos::RCP<Vector<Real> > dualVector_;
Real xlam_;
Real xmu_;
Real vlam_;
Real vmu_;
Real valLam_;
Real valLam2_;
Real valMu_;
Real valMu2_;
bool firstReset_;
void checkInputs(void) const {
Real zero(0);
TEUCHOS_TEST_FOR_EXCEPTION((thresh_ <= zero), std::invalid_argument,
">>> ERROR (ROL::FDivergence): Threshold must be positive!");
}
public:
/** \brief Constructor.
@param[in] eps is the tolerance for the F-divergence constraint
*/
FDivergence(const Real thresh) : RiskMeasure<Real>(), thresh_(thresh),
xlam_(0), xmu_(0), vlam_(0), vmu_(0), valLam_(0), valMu_(0),
firstReset_(true) {
checkInputs();
}
/** \brief Constructor.
@param[in] parlist is a parameter list specifying inputs
parlist should contain sublists "SOL"->"Risk Measure"->"F-Divergence" and
within the "F-Divergence" sublist should have the following parameters
\li "Threshold" (greater than 0)
*/
FDivergence(Teuchos::ParameterList &parlist) : RiskMeasure<Real>(),
xlam_(0), xmu_(0), vlam_(0), vmu_(0), valLam_(0), valMu_(0),
firstReset_(true) {
Teuchos::ParameterList &list
= parlist.sublist("SOL").sublist("Risk Measure").sublist("F-Divergence");
thresh_ = list.get<Real>("Threshold");
checkInputs();
}
/** \brief Implementation of the scalar primal F function.
@param[in] x is a scalar input
@param[in] deriv is the derivative order
Upon return, Fprimal returns \f$F(x)\f$ or a derivative of \f$F(x)\f$.
*/
virtual Real Fprimal(Real x, int deriv = 0) = 0;
/** \brief Implementation of the scalar dual F function.
@param[in] x is a scalar input
@param[in] deriv is the derivative order
Upon return, Fdual returns \f$F^*(x)\f$ or a derivative of \f$F^*(x)\f$.
Here, \f$F^*\f$ denotes the Legendre-Fenchel transformation of \f$F\f$,
i.e.,
\f[
F^*(y) = \sup_{x\in\mathbb{R}}\{xy - F(x)\}.
\f]
*/
virtual Real Fdual(Real x, int deriv = 0) = 0;
void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x) {
RiskMeasure<Real>::reset(x0,x);
xlam_ = Teuchos::dyn_cast<const RiskVector<Real> >(x).getStatistic(0);
xmu_ = Teuchos::dyn_cast<const RiskVector<Real> >(x).getStatistic(1);
if (firstReset_) {
dualVector_ = (x0->dual()).clone();
firstReset_ = false;
}
dualVector_->zero();
valLam_ = 0; valLam2_ = 0; valMu_ = 0; valMu2_ = 0;
}
void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x,
Teuchos::RCP<Vector<Real> > &v0, const Vector<Real> &v) {
reset(x0,x);
v0 = Teuchos::rcp_const_cast<Vector<Real> >(
Teuchos::dyn_cast<const RiskVector<Real> >(v).getVector());
vlam_ = Teuchos::dyn_cast<const RiskVector<Real> >(v).getStatistic(0);
vmu_ = Teuchos::dyn_cast<const RiskVector<Real> >(v).getStatistic(1);
}
// Value update and get functions
void update(const Real val, const Real weight) {
Real r = Fdual((val-xmu_)/xlam_,0);
RiskMeasure<Real>::val_ += weight * r;
}
Real getValue(SampleGenerator<Real> &sampler) {
Real val = RiskMeasure<Real>::val_, gval = 0;
sampler.sumAll(&val,&gval,1);
return xlam_*(thresh_ + gval) + xmu_;
}
// Gradient update and get functions
void update(const Real val, const Vector<Real> &g, const Real weight) {
Real x = (val-xmu_)/xlam_;
Real r0 = Fdual(x,0), r1 = Fdual(x,1);
RiskMeasure<Real>::val_ += weight * r0;
valLam_ -= weight * r1 * x;
valMu_ -= weight * r1;
RiskMeasure<Real>::g_->axpy(weight*r1,g);
}
void getGradient(Vector<Real> &g, SampleGenerator<Real> &sampler) {
RiskVector<Real> &gs = Teuchos::dyn_cast<RiskVector<Real> >(g);
std::vector<Real> mygval(3), gval(3);
mygval[0] = RiskMeasure<Real>::val_;
mygval[1] = valLam_;
mygval[2] = valMu_;
sampler.sumAll(&mygval[0],&gval[0],3);
std::vector<Real> stat(2);
stat[0] = thresh_ + gval[0] + gval[1];
stat[1] = (Real)1 + gval[2];
gs.setStatistic(stat);
sampler.sumAll(*(RiskMeasure<Real>::g_),*dualVector_);
gs.setVector(*dualVector_);
}
void update(const Real val, const Vector<Real> &g, const Real gv,
const Vector<Real> &hv, const Real weight) {
Real x = (val-xmu_)/xlam_;
Real r1 = Fdual(x,1), r2 = Fdual(x,2);
RiskMeasure<Real>::val_ += weight * r2 * x;
valLam_ += weight * r2 * x * x;
valLam2_ -= weight * r2 * gv * x;
valMu_ += weight * r2;
valMu2_ -= weight * r2 * gv;
RiskMeasure<Real>::hv_->axpy(weight * r2 * (gv - vmu_ - vlam_*x)/xlam_, g);
RiskMeasure<Real>::hv_->axpy(weight * r1, hv);
}
void getHessVec(Vector<Real> &hv, SampleGenerator<Real> &sampler) {
RiskVector<Real> &hs = Teuchos::dyn_cast<RiskVector<Real> >(hv);
std::vector<Real> myhval(5), hval(5);
myhval[0] = RiskMeasure<Real>::val_;
myhval[1] = valLam_;
myhval[2] = valLam2_;
myhval[3] = valMu_;
myhval[4] = valMu2_;
sampler.sumAll(&myhval[0],&hval[0],5);
std::vector<Real> stat(2);
stat[0] = (vlam_ * hval[1] + vmu_ * hval[0] + hval[2])/xlam_;
stat[1] = (vlam_ * hval[0] + vmu_ * hval[3] + hval[4])/xlam_;
hs.setStatistic(stat);
sampler.sumAll(*(RiskMeasure<Real>::hv_),*dualVector_);
hs.setVector(*dualVector_);
}
};
}
#endif
|