/usr/include/trilinos/ROL_GaussChebyshev2Quadrature.hpp is in libtrilinos-rol-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_GAUSSCHEBYSHEV2QUADRATURE_HPP
#define ROL_GAUSSCHEBYSHEV2QUADRATURE_HPP
#include "ROL_Quadrature1D.hpp"
#include <cmath>
namespace ROL {
template<class Real>
class GaussChebyshev2Quadrature : public Quadrature1D<Real> {
private:
const int nQuad_;
public:
GaussChebyshev2Quadrature(const int nQuad) : nQuad_(nQuad) {
// Check inputs
std::vector<Real> pts, wts;
buildQuadrature(pts,wts);
Quadrature1D<Real>::set(pts,wts);
}
std::vector<std::vector<Real> > test(const bool printToStream = true,
std::ostream &outStream = std::cout) const {
const int deg = 2*nQuad_-1;
const Real pi(Teuchos::ScalarTraits<Real>::pi()), two(2), one(1), four(4), half(0.5), C(4.0/Teuchos::ScalarTraits<Real>::pi());
std::vector<Real> tmp(4);
std::vector<std::vector<Real> > out(deg+1,tmp);
std::vector<Real> pts, wts;
Quadrature1D<Real>::get(pts,wts);
for (int i = 0; i < deg+1; ++i) {
if (printToStream) {
if (i==0) {
outStream << std::right
<< std::setw(20) << "Poly order"
<< std::setw(20) << "integral"
<< std::setw(20) << "quad approx"
<< std::setw(20) << "abs error"
<< std::endl;
}
}
out[i][0] = static_cast<Real>(i);
if ( i == 0 ) {
out[i][1] = static_cast<Real>(2);
}
else {
out[i][1] = ((i%2) ? static_cast<Real>(0)
: C*two*std::sqrt(pi)*std::tgamma(half*(out[i][0]+one))
/(four*std::tgamma(half*out[i][0]+two)));
}
for (int j = 0; j < nQuad_; ++j) {
out[i][2] += wts[j]*std::pow(pts[j],out[i][0]);
}
out[i][3] = std::abs(out[i][2] - out[i][1]);
if (printToStream) {
outStream << std::fixed << std::setprecision(0) << std::right
<< std::setw(20) << out[i][0]
<< std::scientific << std::setprecision(11) << std::right
<< std::setw(20) << out[i][1]
<< std::setw(20) << out[i][2]
<< std::setw(20) << out[i][3]
<< std::endl;
}
}
return out;
}
private:
void buildQuadrature(std::vector<Real> &pts, std::vector<Real> &wts) const {
pts.resize(nQuad_); wts.resize(nQuad_);
Real sum(0), pi(Teuchos::ScalarTraits<Real>::pi()), two(2), one(1), n = static_cast<Real>(nQuad_);
for (int i = 0; i < nQuad_; ++i) {
pts[i] = std::cos(static_cast<Real>(i+1)*pi/(n+one));
wts[i] = pi/(n+one) * std::pow(std::sin(static_cast<Real>(i+1)*pi/(n+one)),two);
sum += wts[i];
}
for (int i = 0; i < nQuad_; ++i) {
wts[i] *= two/sum;
}
}
};
}
#endif
|