This file is indexed.

/usr/include/trilinos/ROL_GenMoreauYosidaCVaR.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_GENMOREAUYOSIDACVAR_HPP
#define ROL_GENMOREAUYOSIDACVAR_HPP

#include "ROL_ExpectationQuad.hpp"

/** @ingroup risk_group
    \class ROL::MoreauYosidaCVaR
    \brief Provides an interface for a smooth approximation of the conditional
           value-at-risk.

    The conditional value-at-risk (also called the average value-at-risk
    or the expected shortfall) with confidence level \f$0\le \beta < 1\f$
    is
    \f[
       \mathcal{R}(X) = \inf_{t\in\mathbb{R}} \left\{
         t + \frac{1}{1-\beta} \mathbb{E}\left[(X-t)_+\right]
         \right\}
    \f]
    where \f$(x)_+ = \max\{0,x\}\f$.  If the distribution of \f$X\f$ is
    continuous, then \f$\mathcal{R}\f$ is the conditional expectation of
    \f$X\f$ exceeding the \f$\beta\f$-quantile of \f$X\f$ and the optimal
    \f$t\f$ is the \f$\beta\f$-quantile.
    Additionally, \f$\mathcal{R}\f$ is a law-invariant coherent risk measure.

    The conditional value-at-risk is in general not smooth due to
    \f$(\cdot)_+\f$.  One approach to smoothing the conditional-value-at-risk
    is to regularize its biconjugate form.  That is, since \f$\mathcal{R}\f$
    is coherent, we have that
    \f[
       \mathcal{R}(X) = \sup_{\vartheta\in\mathfrak{A}}\mathbb{E}[\vartheta X]
    \f]
    where \f$\mathfrak{A}\f$ is the effective domain of the conjugate of
    \f$\mathcal{R}\f$, i.e.,
    \f[
       \mathfrak{A} = \mathrm{dom}\,\mathcal{R}^*
                    = \{\vartheta\in\mathcal{X}^*\,:\,
                        \mathcal{R}^*(\vartheta) < \infty\}
    \f]
    where \f$\mathcal{R}^*\f$ denotes the Legendre-Fenchel transformation of
    \f$\mathcal{R}\f$.  This risk measure implements the penalized conditional
    value-at-risk
    \f[
       \mathcal{R}(X) = \sup_{\vartheta\in\mathfrak{A}}
         \left\{\mathbb{E}[\vartheta X]
          - \frac{\gamma}{2}\mathbb{E}[(\vartheta-1)^2]\right\}
    \f]
    for \f$\gamma > 0\f$.  This is implemented using the expectation risk
    quadrangle interface.  Thus, we represent \f$\mathcal{R}\f$ as
    \f[
       \mathcal{R}(X) = \inf_{t\in\mathbb{R}} \left\{
         t + \mathbb{E}\left[v(X-t)\right]
         \right\}
    \f]
    for an appropriately defined scalar regret function \f$v\f$.
    ROL implements this by augmenting the optimization vector \f$x_0\f$ with
    the parameter \f$t\f$, then minimizes jointly for \f$(x_0,t)\f$.
*/

namespace ROL {

template<class Real>
class GenMoreauYosidaCVaR : public ExpectationQuad<Real> {
private:

  Real prob_;
  Real lam_;
  Real eps_;

  Real alpha_;
  Real beta_;

  Real omp_;
  Real oma_;
  Real bmo_;
  Real lb_;
  Real ub_;

  void checkInputs(void) const {
    Real zero(0), one(1);
    TEUCHOS_TEST_FOR_EXCEPTION((prob_ <= zero) || (prob_ >= one), std::invalid_argument,
      ">>> ERROR (ROL::GenMoreauYosidaCVaR): Confidence level must be between 0 and 1!");
    TEUCHOS_TEST_FOR_EXCEPTION((lam_ < zero) || (lam_ > one), std::invalid_argument,
      ">>> ERROR (ROL::GenMoreauYosidaCVaR): Convex combination parameter must be positive!");
    TEUCHOS_TEST_FOR_EXCEPTION((eps_ <= zero), std::invalid_argument,
      ">>> ERROR (ROL::GenMoreauYosidaCVaR): Smoothing parameter must be positive!");
  }

  void setParameters(void) {
    const Real one(1);
    omp_   = one-prob_;
    alpha_ = lam_;
    beta_  = (one-alpha_*prob_)/omp_;
    oma_   = one-alpha_;
    bmo_   = beta_-one;
    lb_    = -eps_*oma_;
    ub_    =  eps_*bmo_;
  }

public:
  /** \brief Constructor.

      @param[in]     prob    is the confidence level
      @param[in]     eps     is the regularization parameter
  */
  GenMoreauYosidaCVaR(Real prob, Real eps )
    : ExpectationQuad<Real>(), prob_(prob), lam_(0), eps_(eps) {
    checkInputs();
    setParameters();
  }

  /** \brief Constructor.

      @param[in]     prob    is the confidence level
      @param[in]     lam     is the convex combination parameter
      @param[in]     eps     is the regularization parameter
  */
  GenMoreauYosidaCVaR(Real prob, Real lam, Real eps )
    : ExpectationQuad<Real>(), prob_(prob), lam_(lam), eps_(eps) {
    checkInputs();
    setParameters();
  }

  /** \brief Constructor.

      @param[in]     parlist is a parameter list specifying inputs

      parlist should contain sublists "SOL"->"Risk Measure"->"Moreau-Yosida CVaR" and
      within the "Moreau-Yosida CVaR" sublist should have the following parameters
      \li "Confidence Level" (between 0 and 1)
      \li "Convex Combination Parameter" (between 0 and 1)
      \li "Smoothing Parameter" (must be positive)
  */
  GenMoreauYosidaCVaR(Teuchos::ParameterList &parlist)
    : ExpectationQuad<Real>() {
    Teuchos::ParameterList& list
      = parlist.sublist("SOL").sublist("Risk Measure").sublist("Generalized Moreau-Yosida CVaR");
    prob_ = list.get<Real>("Confidence Level");
    lam_  = list.get<Real>("Convex Combination Parameter");
    eps_  = list.get<Real>("Smoothing Parameter");
    checkInputs();
    setParameters();
  }

  Real error(Real x, int deriv = 0) {
    Real zero(0), one(1);
    Real X = ((deriv==0) ? x : ((deriv==1) ? one : zero));
    return regret(x,deriv) - X;
  }

  Real regret(Real x, int deriv = 0) {
    Real zero(0), half(0.5), one(1), reg(0);
    if ( x <= lb_ ) {
      reg = ((deriv == 0) ? alpha_*x + half*lb_*oma_
          : ((deriv == 1) ? alpha_ : zero));
    }
    else if ( x >= ub_ ) {
      reg = ((deriv == 0) ? beta_*x - half*ub_*bmo_
          : ((deriv == 1) ? beta_ : zero));
    }
    else {
      reg = ((deriv == 0) ? half/eps_*x*x + x
          : ((deriv == 1) ? x/eps_ + one : one/eps_));
    }
    return reg;
  }

  void checkRegret(void) {
    ExpectationQuad<Real>::checkRegret();
    Real zero(0), one(1), two(2), p1(0.1);
    // Check v'(ub)
    Real x = ub_;
    Real vx = zero, vy = zero;
    Real dv = regret(x,1);
    Real t = one;
    Real diff = zero;
    Real err = zero;
    std::cout << std::right << std::setw(20) << "CHECK REGRET: v'(ub) is correct? \n";
    std::cout << std::right << std::setw(20) << "t"
                            << std::setw(20) << "v'(x)"
                            << std::setw(20) << "(v(x+t)-v(x-t))/2t"
                            << std::setw(20) << "Error"
                            << "\n";
    for (int i = 0; i < 13; i++) {
      vy = regret(x+t,0);
      vx = regret(x-t,0);
      diff = (vy-vx)/(two*t);
      err = std::abs(diff-dv);
      std::cout << std::scientific << std::setprecision(11) << std::right
                << std::setw(20) << t
                << std::setw(20) << dv
                << std::setw(20) << diff
                << std::setw(20) << err
                << "\n";
      t *= p1;
    }
    std::cout << "\n";
    // check v''(ub) 
    vx = zero;
    vy = zero;
    dv = regret(x,2);
    t = one;
    diff = zero;
    err = zero;
    std::cout << std::right << std::setw(20) << "CHECK REGRET: v''(ub) is correct? \n";
    std::cout << std::right << std::setw(20) << "t"
                            << std::setw(20) << "v''(x)"
                            << std::setw(20) << "(v'(x+t)-v'(x-t))/2t"
                            << std::setw(20) << "Error"
                            << "\n";
    for (int i = 0; i < 13; i++) {
      vy = regret(x+t,1);
      vx = regret(x-t,1);
      diff = (vy-vx)/(two*t);
      err = std::abs(diff-dv);
      std::cout << std::scientific << std::setprecision(11) << std::right
                << std::setw(20) << t
                << std::setw(20) << dv
                << std::setw(20) << diff
                << std::setw(20) << err
                << "\n";
      t *= p1;
    }
    std::cout << "\n"; 
    // Check v'(0)
    x = zero;
    vx = zero;
    vy = zero;
    dv = regret(x,1);
    t = one;
    diff = zero;
    err = zero;
    std::cout << std::right << std::setw(20) << "CHECK REGRET: v'(0) is correct? \n";
    std::cout << std::right << std::setw(20) << "t"
                            << std::setw(20) << "v'(x)"
                            << std::setw(20) << "(v(x+t)-v(x-t))/2t"
                            << std::setw(20) << "Error"
                            << "\n";
    for (int i = 0; i < 13; i++) {
      vy = regret(x+t,0);
      vx = regret(x-t,0);
      diff = (vy-vx)/(two*t);
      err = std::abs(diff-dv);
      std::cout << std::scientific << std::setprecision(11) << std::right
                << std::setw(20) << t
                << std::setw(20) << dv
                << std::setw(20) << diff
                << std::setw(20) << err
                << "\n";
      t *= p1;
    }
    std::cout << "\n";
    // check v''(0) 
    vx = zero;
    vy = zero;
    dv = regret(x,2);
    t = one;
    diff = zero;
    err = zero;
    std::cout << std::right << std::setw(20) << "CHECK REGRET: v''(0) is correct? \n";
    std::cout << std::right << std::setw(20) << "t"
                            << std::setw(20) << "v''(x)"
                            << std::setw(20) << "(v'(x+t)-v'(x-t))/2t"
                            << std::setw(20) << "Error"
                            << "\n";
    for (int i = 0; i < 13; i++) {
      vy = regret(x+t,1);
      vx = regret(x-t,1);
      diff = (vy-vx)/(two*t);
      err = std::abs(diff-dv);
      std::cout << std::scientific << std::setprecision(11) << std::right
                << std::setw(20) << t
                << std::setw(20) << dv
                << std::setw(20) << diff
                << std::setw(20) << err
                << "\n";
      t *= p1;
    }
    std::cout << "\n"; 
    // Check v'(lb)
    x = lb_;
    vx = zero;
    vy = zero;
    dv = regret(x,1);
    t = one;
    diff = zero;
    err = zero;
    std::cout << std::right << std::setw(20) << "CHECK REGRET: v'(lb) is correct? \n";
    std::cout << std::right << std::setw(20) << "t"
                            << std::setw(20) << "v'(x)"
                            << std::setw(20) << "(v(x+t)-v(x-t))/2t"
                            << std::setw(20) << "Error"
                            << "\n";
    for (int i = 0; i < 13; i++) {
      vy = regret(x+t,0);
      vx = regret(x-t,0);
      diff = (vy-vx)/(two*t);
      err = std::abs(diff-dv);
      std::cout << std::scientific << std::setprecision(11) << std::right
                << std::setw(20) << t
                << std::setw(20) << dv
                << std::setw(20) << diff
                << std::setw(20) << err
                << "\n";
      t *= p1;
    }
    std::cout << "\n";
    // check v''(lb) 
    vx = zero;
    vy = zero;
    dv = regret(x,2);
    t = one;
    diff = zero;
    err = zero;
    std::cout << std::right << std::setw(20) << "CHECK REGRET: v''(lb) is correct? \n";
    std::cout << std::right << std::setw(20) << "t"
                            << std::setw(20) << "v''(x)"
                            << std::setw(20) << "(v'(x+t)-v'(x-t))/2t"
                            << std::setw(20) << "Error"
                            << "\n";
    for (int i = 0; i < 13; i++) {
      vy = regret(x+t,1);
      vx = regret(x-t,1);
      diff = (vy-vx)/(two*t);
      err = std::abs(diff-dv);
      std::cout << std::scientific << std::setprecision(11) << std::right
                << std::setw(20) << t
                << std::setw(20) << dv
                << std::setw(20) << diff
                << std::setw(20) << err
                << "\n";
      t *= p1;
    }
    std::cout << "\n"; 
  }

};

}
#endif