This file is indexed.

/usr/include/trilinos/ROL_HMCRObjective.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_HMCROBJECTIVE_HPP
#define ROL_HMCROBJECTIVE_HPP

#include "Teuchos_RCP.hpp"
#include "ROL_RiskVector.hpp"
#include "ROL_Objective.hpp"
#include "ROL_SampleGenerator.hpp"

namespace ROL {

template<class Real>
class HMCRObjective : public Objective<Real> {
private:
  Teuchos::RCP<Objective<Real> > ParametrizedObjective_;

  Real order_;
  Real prob_;

  Teuchos::RCP<SampleGenerator<Real> > ValueSampler_;
  Teuchos::RCP<SampleGenerator<Real> > GradientSampler_;
  Teuchos::RCP<SampleGenerator<Real> > HessianSampler_;

  Teuchos::RCP<Vector<Real> > pointGrad_;
  Teuchos::RCP<Vector<Real> > pointHess_;

  Teuchos::RCP<Vector<Real> > gradient0_;
  Teuchos::RCP<Vector<Real> > sumGrad0_;
  Teuchos::RCP<Vector<Real> > gradient1_;
  Teuchos::RCP<Vector<Real> > sumGrad1_;
  Teuchos::RCP<Vector<Real> > gradient2_;
  Teuchos::RCP<Vector<Real> > sumGrad2_;
  Teuchos::RCP<Vector<Real> > hessvec_;
  Teuchos::RCP<Vector<Real> > sumHess_;
 
  bool initialized_;
  bool storage_;

  std::map<std::vector<Real>,Real> value_storage_;
  std::map<std::vector<Real>,Teuchos::RCP<Vector<Real> > > gradient_storage_;

  void initialize(const Vector<Real> &x) {
    pointGrad_ = x.dual().clone();
    pointHess_ = x.dual().clone();
    gradient0_ = x.dual().clone();
    sumGrad0_  = x.dual().clone();
    gradient1_ = x.dual().clone();
    sumGrad1_  = x.dual().clone();
    gradient2_ = x.dual().clone();
    sumGrad2_  = x.dual().clone();
    hessvec_   = x.dual().clone();
    sumHess_   = x.dual().clone();
    initialized_ = true;
  }

  void unwrap_const_CVaR_vector(Teuchos::RCP<Vector<Real> > &xvec, Real &xvar,
                          const Vector<Real> &x) {
    xvec = Teuchos::rcp_const_cast<Vector<Real> >(Teuchos::dyn_cast<const RiskVector<Real> >(x).getVector());
    xvar = Teuchos::dyn_cast<const RiskVector<Real> >(x).getStatistic(0);
    if ( !initialized_ ) {
      initialize(*xvec);
    }
  }

  void getValue(Real &val, const Vector<Real> &x,
          const std::vector<Real> &param, Real &tol) {
    if ( storage_ && value_storage_.count(param) ) {
      val = value_storage_[param];
    }
    else {
      ParametrizedObjective_->setParameter(param);
      val = ParametrizedObjective_->value(x,tol);
      if ( storage_ ) {
        value_storage_.insert(std::pair<std::vector<Real>,Real>(param,val));
      }
    }
  }

  void getGradient(Vector<Real> &g, const Vector<Real> &x,
             const std::vector<Real> &param, Real &tol) {
    if ( storage_ && gradient_storage_.count(param) ) {
      g.set(*(gradient_storage_[param]));
    }
    else {
      ParametrizedObjective_->setParameter(param);
      ParametrizedObjective_->gradient(g,x,tol);
      if ( storage_ ) {
        Teuchos::RCP<Vector<Real> > tmp = g.clone();
        gradient_storage_.insert(std::pair<std::vector<Real>,Teuchos::RCP<Vector<Real> > >(param,tmp));
        gradient_storage_[param]->set(g);
      }
    }
  }

  void getHessVec(Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &x,
            const std::vector<Real> &param, Real &tol) {
    ParametrizedObjective_->setParameter(param);
    ParametrizedObjective_->hessVec(hv,v,x,tol);
  }
 

public:
  virtual ~HMCRObjective() {}

  HMCRObjective( Teuchos::RCP<Objective<Real> > &pObj,
                 Real order, Real prob,
                 Teuchos::RCP<SampleGenerator<Real> > &vsampler, 
                 Teuchos::RCP<SampleGenerator<Real> > &gsampler,
                 Teuchos::RCP<SampleGenerator<Real> > &hsampler,
                 bool storage = true )
    : ParametrizedObjective_(pObj),
      ValueSampler_(vsampler), GradientSampler_(gsampler), HessianSampler_(hsampler),
      initialized_(false), storage_(storage) {
    order_ = ((order < 1.0) ? 1.0 : order);
    prob_  = ((prob > 1.0) ? 1.0 : ((prob < 0.0) ? 0.0 : prob));
    value_storage_.clear();
    gradient_storage_.clear();
  }

  HMCRObjective( Teuchos::RCP<Objective<Real> > &pObj,
                 Real order, Real prob,
                 Teuchos::RCP<SampleGenerator<Real> > &vsampler, 
                 Teuchos::RCP<SampleGenerator<Real> > &gsampler,
                 bool storage = true )
    : ParametrizedObjective_(pObj),
      ValueSampler_(vsampler), GradientSampler_(gsampler), HessianSampler_(gsampler),
      initialized_(false), storage_(storage) {
    order_ = ((order < 1.0) ? 1.0 : order);
    prob_  = ((prob > 1.0) ? 1.0 : ((prob < 0.0) ? 0.0 : prob));
    value_storage_.clear();
    gradient_storage_.clear();
  }

  HMCRObjective( Teuchos::RCP<Objective<Real> > &pObj,
                 Real order, Real prob,
                 Teuchos::RCP<SampleGenerator<Real> > &sampler,
                 bool storage = true )
    : ParametrizedObjective_(pObj), order_(order), prob_(prob),
      ValueSampler_(sampler), GradientSampler_(sampler), HessianSampler_(sampler),
      initialized_(false), storage_(storage) {
    order_ = ((order < 1.0) ? 1.0 : order);
    prob_  = ((prob > 1.0) ? 1.0 : ((prob < 0.0) ? 0.0 : prob));
    value_storage_.clear();
    gradient_storage_.clear();
  }

  void update( const Vector<Real> &x, bool flag = true, int iter = -1 ) {
    Teuchos::RCP<Vector<Real> > xvec; Real xvar = 0.0;
    unwrap_const_CVaR_vector(xvec,xvar,x);
    ParametrizedObjective_->update(*xvec,flag,iter);
    ValueSampler_->update(*xvec);
    if ( storage_ ) {
      value_storage_.clear();
    }
    if ( flag ) {
      GradientSampler_->update(*xvec);
      HessianSampler_->update(*xvec);
      if ( storage_ ) {
        gradient_storage_.clear();
      }
    }
  }

  Real value( const Vector<Real> &x, Real &tol ) {
    Teuchos::RCP<Vector<Real> > xvec; Real xvar = 0.0;
    unwrap_const_CVaR_vector(xvec,xvar,x);
    // Initialize storage
    std::vector<Real> point;
    Real weight = 0.0, myval = 0.0, pval = 0.0, val = 0.0;
    int start = ValueSampler_->start(), end = ValueSampler_->numMySamples();
    for ( int i = start; i < end; i++ ) {
      weight = ValueSampler_->getMyWeight(i);
      point  = ValueSampler_->getMyPoint(i);
      // Compute f(xvec,xi)
      getValue(pval,*xvec,point,tol);
      if ( pval > xvar ) {
        // Build partial sum depending on value
        myval += weight*((order_ == 1.0) ? pval-xvar
                          : std::pow(pval-xvar,order_));
      }
    }
    // Update expected value
    ValueSampler_->sumAll(&myval,&val,1);
    // Return HMCR value
    if (std::abs(val) < ROL_EPSILON<Real>()) {
      return xvar;
    }
    return xvar + ((order_ == 1.0) ? val
                    : ((order_ == 2.0) ? std::sqrt(val)
                      : std::pow(val,1.0/order_)))/(1.0-prob_);
  }

  void gradient( Vector<Real> &g, const Vector<Real> &x, Real &tol ) {
    Teuchos::RCP<Vector<Real> > xvec; Real xvar = 0.0;
    unwrap_const_CVaR_vector(xvec,xvar,x);
    RiskVector<Real> &gc = Teuchos::dyn_cast<RiskVector<Real> >(g);
    // Initialize storage
    g.zero(); sumGrad0_->zero();
    std::vector<Real> point, val(2,0.0), myval(2,0.0);
    Real weight = 0.0, pval = 0.0, pvalp0 = 0.0, pvalp1 = 0.0;
    int start = GradientSampler_->start(), end = GradientSampler_->numMySamples();
    for ( int i = start; i < end; i++ ) {
      weight = GradientSampler_->getMyWeight(i);
      point  = GradientSampler_->getMyPoint(i);
      // Compute the value of f(xvec,xi)
      getValue(pval,*xvec,point,tol);
      if ( pval > xvar ) {
        // Compute max(0,f(xvec,xi)-xvar)^order
        pvalp0 = ((order_ == 1.0) ? pval-xvar
                   : std::pow(pval-xvar,order_));
        pvalp1 = ((order_ == 1.0) ? 1.0
                   : ((order_ == 2.0) ? pval-xvar
                     : std::pow(pval-xvar,order_-1.0)));
        // Build partial sums depending on value
        myval[0] += weight*pvalp0;
        myval[1] += weight*pvalp1;
        // Compute gradient of f(xvec,xi)
        getGradient(*pointGrad_,*xvec,point,tol);
        // Build partial sum depending on gradient
        sumGrad0_->axpy(weight*pvalp1,*pointGrad_);
      }
    }
    Real gvar = 1.0; gradient0_->zero();
    // Combine partial sums
    GradientSampler_->sumAll(&myval[0],&val[0],2);
    if (std::abs(val[0]) >= ROL_EPSILON<Real>()) {
      GradientSampler_->sumAll(*sumGrad0_,*gradient0_);
      // Compute VaR gradient and HMCR gradient
      Real norm = ((order_ == 1.0) ? 1.0
                    : ((order_ == 2.0) ? std::sqrt(val[0])
                      : std::pow(val[0],(order_-1.0)/order_)));
      gvar -= val[1]/((1.0-prob_)*norm);
      gradient0_->scale(1.0/((1.0-prob_)*norm));
    }
    // Set gradient components of CVaR vector
    gc.setStatistic(gvar);
    gc.setVector(*gradient0_);
  }

  void hessVec( Vector<Real> &hv, const Vector<Real> &v,
                        const Vector<Real> &x, Real &tol ) {
    Teuchos::RCP<Vector<Real> > xvec; Real xvar = 0.0;
    unwrap_const_CVaR_vector(xvec,xvar,x);
    Teuchos::RCP<Vector<Real> > vvec; Real vvar = 0.0;
    unwrap_const_CVaR_vector(vvec,vvar,v);
    RiskVector<Real> &hvc = Teuchos::dyn_cast<RiskVector<Real> >(hv);
    // Initialize storage
    hv.zero();
    sumGrad0_->zero(); sumGrad1_->zero(); sumGrad2_->zero(); sumHess_->zero();
    gradient0_->zero(); gradient1_->zero(); gradient2_->zero();
    Real weight = 0.0;
    std::vector<Real> point;
    Real pval = 0.0, pvalp0 = 0.0, pvalp1 = 0.0, pvalp2 = 0.0, gv = 0.0;
    std::vector<Real> val(5,0.0), myval(5,0.0);
    int start = HessianSampler_->start(), end = HessianSampler_->numMySamples();
    for ( int i = start; i < end; i++ ) {
      // Get sample and associated probability
      weight = HessianSampler_->getMyWeight(i);
      point  = HessianSampler_->getMyPoint(i);
      // Compute the value of f(xvec,xi)
      getValue(pval,*xvec,point,tol);
      if ( pval > xvar ) {
        // Compute max(0,f(xvec,xi)-xvar)^order
        pvalp0 = ((order_ == 1.0) ? pval-xvar
                   : std::pow(pval-xvar,order_));
        pvalp1 = ((order_ == 1.0) ? 1.0
                   : ((order_ == 2.0) ? pval-xvar
                     : std::pow(pval-xvar,order_-1.0)));
        pvalp2 = ((order_ == 1.0) ? 0.0
                   : ((order_ == 2.0) ? 1.0
                     : ((order_ == 3.0) ? pval-xvar
                       : std::pow(pval-xvar,order_-2.0))));
        // Build partial sums depending on value
        myval[0] += weight*pvalp0;
        myval[1] += weight*pvalp1;
        myval[2] += weight*pvalp2;
        // Compute the gradient and directional derivative of f(xvec,xi)
        getGradient(*pointGrad_,*xvec,point,tol);
        gv = pointGrad_->dot(vvec->dual());
        // Build partial sums depending on gradient
        myval[3] += weight*pvalp1*gv;
        myval[4] += weight*pvalp2*gv;
        sumGrad0_->axpy(weight*pvalp1,*pointGrad_);
        sumGrad1_->axpy(weight*pvalp2,*pointGrad_);
        sumGrad2_->axpy(weight*pvalp2*gv,*pointGrad_);
        // Compute the hessian of f(xvec,xi) in the direction vvec
        getHessVec(*pointHess_,*vvec,*xvec,point,tol);
        // Build partial sum depending on the hessian
        sumHess_->axpy(weight*pvalp1,*pointHess_);
      }
    }
    Real hvar = 0.0; hessvec_->zero();
    HessianSampler_->sumAll(&myval[0],&val[0],5);
    if (std::abs(val[0]) >= ROL_EPSILON<Real>()) {
    // Compile partial sums
      HessianSampler_->sumAll(*sumGrad0_,*gradient0_);
      HessianSampler_->sumAll(*sumGrad1_,*gradient1_);
      HessianSampler_->sumAll(*sumGrad2_,*gradient2_);
      HessianSampler_->sumAll(*sumHess_,*hessvec_);
      // Compute VaR Hessian-times-a-vector and HMCR Hessian-times-a-vector
      Real norm0 = (1.0-prob_)*((order_ == 1.0) ? 1.0
                                 : ((order_ == 2.0) ? std::sqrt(val[0])
                                   : std::pow(val[0],(order_-1.0)/order_)));
      Real norm1 = (1.0-prob_)*((order_ == 1.0) ? 1.0
                                 : std::pow(val[0],(2.0*order_-1.0)/order_));
      hvar = (order_-1.0)*((val[2]/norm0 - val[1]*val[1]/norm1)*vvar
                               -(val[4]/norm0 - val[3]*val[1]/norm1));
      hessvec_->scale(1.0/norm0); //(order_-1.0)/norm0);
      hessvec_->axpy(-(order_-1.0)*vvar/norm0,*gradient1_);
      hessvec_->axpy((order_-1.0)*(vvar*val[1]-val[3])/norm1,*gradient0_);
      hessvec_->axpy((order_-1.0)/norm0,*gradient2_);
    }
    // Set gradient components of CVaR vector
    hvc.setStatistic(hvar);
    hvc.setVector(*hessvec_);
  }

  virtual void precond( Vector<Real> &Pv, const Vector<Real> &v,
                        const Vector<Real> &x, Real &tol ) {
    Pv.set(v.dual());
  }
};

}

#endif