This file is indexed.

/usr/include/trilinos/ROL_InteriorPoint.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_INTERIORPOINT_H
#define ROL_INTERIORPOINT_H

#include "ROL_PartitionedVector.hpp"
#include "ROL_Objective.hpp"
#include "ROL_InequalityConstraint.hpp"

namespace ROL {

namespace InteriorPoint {

/** @ingroup func_group
 *  \class ROL::PenalizedObjective
 *  \brief Adds barrier term to generic objective
 */
template <class Real>
class PenalizedObjective : public ROL::Objective<Real> {
private:

  typedef Vector<Real>            V;
  typedef PartitionedVector<Real> PV;
  typedef typename PV::size_type  size_type;

  const static size_type OPT   = 0;
  const static size_type SLACK = 1;

  Teuchos::RCP<Objective<Real> > obj_;
  Teuchos::RCP<Objective<Real> > slack_barrier_;
  Teuchos::RCP<Objective<Real> > bc_barrier_;
  Teuchos::RCP<PV>    x_;
  Teuchos::RCP<PV>    g_;
  Teuchos::RCP<V>     scratch_;


  Real mu_;
  int nfval_;
  int ngval_;
  Real fval_;
  Real gnorm_;
  bool hasBoundConstraint_;

public:

  // Constructor without BoundConstraint
  PenalizedObjective( const Teuchos::RCP<Objective<Real> > &obj,
                      const Teuchos::RCP<Objective<Real> > &slack_barrier,
                      const Vector<Real> &x,
                      Real mu ) :
    obj_(obj), slack_barrier_(slack_barrier), bc_barrier_(Teuchos::null),
    x_(Teuchos::null), g_(Teuchos::null), scratch_(Teuchos::null),
    mu_(mu), nfval_(0), ngval_(0), fval_(0.0), gnorm_(0.0),
    hasBoundConstraint_(false)  {

    const PV &xpv = Teuchos::dyn_cast<const PV>(x);

    x_ = Teuchos::rcp_static_cast<PV>(xpv.clone());
    g_ = Teuchos::rcp_static_cast<PV>(xpv.dual().clone());
  }


  // Constructor with BoundConstraint
  PenalizedObjective( const Teuchos::RCP<Objective<Real> > &obj,
                      const Teuchos::RCP<Objective<Real> > &slack_barrier,
                      const Teuchos::RCP<Objective<Real> > &bc_barrier,
                      const Vector<Real> &x,
                      Real mu ) :
    obj_(obj), slack_barrier_(slack_barrier), bc_barrier_(bc_barrier),
    x_(Teuchos::null), g_(Teuchos::null), scratch_(Teuchos::null),
    mu_(mu), nfval_(0), ngval_(0), fval_(0.0), gnorm_(0.0),
    hasBoundConstraint_(true)  {

    const PV &xpv = Teuchos::dyn_cast<const PV>(x);

    x_ = Teuchos::rcp_static_cast<PV>(xpv.clone());
    g_ = Teuchos::rcp_static_cast<PV>(xpv.dual().clone());

    scratch_ = g_->get(OPT)->clone();
  }




  void updatePenalty( Real mu ) {
    mu_ = mu;
  }

  int getNumberFunctionEvaluations(void) {
    return nfval_;
  }

  int getNumberGradientEvaluations(void) {
    return ngval_;
  }

  void reset(void) {
    nfval_ = 0.; nfval_ = 0.;
  }

  /** \brief Update barrier penalized objective function

      This function updates the penalized objective function at new iterations.
      @param[in]          x      is the new iterate.
      @param[in]          flag   is true if the iterate has changed.
      @param[in]          iter   is the outer algorithm iterations count.
  */

  void update( const Vector<Real> &x, bool flag = true, int iter = -1 ) {

    const PV &xpv = Teuchos::dyn_cast<const PV>(x);

    Teuchos::RCP<const V> xo = xpv.get(OPT);
    Teuchos::RCP<const V> xs = xpv.get(SLACK);

    obj_->update(*xo,flag,iter);
    slack_barrier_->update(*xs,flag,iter);

    if(hasBoundConstraint_) {
      bc_barrier_->update(*xo,flag,iter);
    }

  }

  /** \brief Compute value.

      This function returns the barrier objective value.
      @param[in]          x   is the current iterate.
      @param[in]          tol is a tolerance.
  */
  Real value( const Vector<Real> &x, Real &tol ) {

    const PV &xpv = Teuchos::dyn_cast<const PV>(x);

    Teuchos::RCP<const V> xo = xpv.get(OPT);
    Teuchos::RCP<const V> xs = xpv.get(SLACK);

    Real val = 0;

    // Compute objective function value
    fval_ = obj_->value(*xo,tol);
    Real pval = slack_barrier_->value(*xs,tol);

    val = fval_ + mu_*pval;

    if( hasBoundConstraint_ ) {
      Real bval = bc_barrier_->value(*xo,tol);
      val += mu_*bval;
    }

    ++nfval_;

    return val;
  }

  Real getObjectiveValue() {
    return fval_;
  }


  /** \brief Compute gradient.

      This function returns the barrier penalized objective gradient.
      @param[out]         g   is the gradient.
      @param[in]          x   is the current iterate.
      @param[in]          tol is a tolerance.
  */
  void gradient( Vector<Real> &g, const Vector<Real> &x, Real &tol ) {

      // Compute objective function gradient
      const PV &xpv = Teuchos::dyn_cast<const PV>(x);
      PV &gpv = Teuchos::dyn_cast<PV>(g);

      Teuchos::RCP<const V> xo = xpv.get(OPT);
      Teuchos::RCP<const V> xs = xpv.get(SLACK);

      Teuchos::RCP<V> go = gpv.get(OPT);
      Teuchos::RCP<V> gs = gpv.get(SLACK);

      obj_->gradient(*go,*xo,tol);

      if( hasBoundConstraint_ ) {
        bc_barrier_->gradient(*scratch_,*xo,tol);
        scratch_->scale(mu_);
        go->plus(*scratch_);
      }

      slack_barrier_->gradient(*gs,*xs,tol);
      gs->scale(mu_);

      g_->set(g);
      g_->zero(SLACK);

      gnorm_ = g.norm();

      ++ngval_;

  }

  void getObjectiveGradient( Vector<Real> &g ) {

  }

  Real getGradientNorm() {
    return gnorm_;
  }

  /** \brief Apply Hessian approximation to vector.

      This function applies the Hessian of the barrier penalized objective
      to the vector \f$v\f$.
      @param[out]         hv  is the the action of the Hessian on \f$v\f$.
      @param[in]          v   is the direction vector.
      @param[in]          x   is the current iterate.
      @param[in]          tol is a tolerance.
  */
  void hessVec( Vector<Real> &hv, const Vector<Real> &v,
                 const Vector<Real> &x, Real &tol ) {

    using Teuchos::RCP;  using Teuchos::dyn_cast;

    const PV &xpv = dyn_cast<const PV>(x);
    const PV &vpv = dyn_cast<const PV>(v);
    PV &hvpv = dyn_cast<PV>(hv);

    RCP<const V> xo = xpv.get(OPT);
    RCP<const V> xs = xpv.get(SLACK);

    RCP<const V> vo = vpv.get(OPT);
    RCP<const V> vs = vpv.get(SLACK);

    RCP<V> hvo = hvpv.get(OPT);
    RCP<V> hvs = hvpv.get(SLACK);

    obj_->hessVec(*hvo, *vo, *xo, tol);

    if( hasBoundConstraint_ ) {
      bc_barrier_->hessVec(*scratch_,*vo,*xo,tol);
      scratch_->scale(mu_);
      hvo->plus(*scratch_);

    }

    slack_barrier_->hessVec(*hvs, *vs, *xs, tol);
    hvs->scale(mu_);

  }

}; // class InteriorPointObjective



/** @ingroup func_group
 *  \class ROL::InteriorPoint::CompositeConstraint
 *  \brief Has both inequality and equality constraints.
 *        Treat inequality constraint as equality with slack variable
 */

template<class Real>
class CompositeConstraint : public EqualityConstraint<Real> {
private:

  typedef Vector<Real>            V;
  typedef PartitionedVector<Real> PV;
  typedef typename PV::size_type  size_type;

  const static size_type OPT   = 0;
  const static size_type SLACK = 1;

  const static size_type INEQ  = 0;
  const static size_type EQUAL = 1;

  Teuchos::RCP<InequalityConstraint<Real> > incon_;
  Teuchos::RCP<EqualityConstraint<Real> >   eqcon_;

  bool hasEquality_;         // True if an equality constraint is present
  int  ncval_;               // Number of constraint evaluations


public:

  // Constructor with inequality and equality constraints
  CompositeConstraint( const Teuchos::RCP<InequalityConstraint<Real> > &incon,
                       const Teuchos::RCP<EqualityConstraint<Real> > &eqcon ) :
                       incon_(incon), eqcon_(eqcon),
                       hasEquality_(true), ncval_(0) { }

  // Constructor with inequality constraint only
  CompositeConstraint( const Teuchos::RCP<InequalityConstraint<Real> > &incon ) :
                       incon_(incon), eqcon_(Teuchos::null),
                       hasEquality_(false), ncval_(0) { }


  int getNumberConstraintEvaluations(void) {
    return ncval_;
  }

  void update( const Vector<Real> &x, bool flag = true, int iter = -1 ) {

    const PV &xpv = Teuchos::dyn_cast<const PV>(x);

    Teuchos::RCP<const V> xo = xpv.get(OPT);
    Teuchos::RCP<const V> xs = xpv.get(SLACK);

    incon_->update(*xo,flag,iter);

    if( hasEquality_ ) {
      eqcon_->update(*xo,flag,iter);
    }

  }

  void value( Vector<Real> &c, const Vector<Real> &x, Real &tol ) {

    PV &cpv = Teuchos::dyn_cast<PV>(c);
    const PV &xpv = Teuchos::dyn_cast<const PV>(x);

    Teuchos::RCP<const V> xo = xpv.get(OPT);
    Teuchos::RCP<const V> xs = xpv.get(SLACK);

    Teuchos::RCP<V> ci = cpv.get(INEQ);
    Teuchos::RCP<V> ce;

    incon_->value(*ci, *xo, tol);
    ci->axpy(-1.0,*xs);

    if(hasEquality_) {
      ce = cpv.get(EQUAL);
      eqcon_->value(*ce, *xo, tol);
    }

    ++ncval_;

  }

  void applyJacobian( Vector<Real> &jv,
                      const Vector<Real> &v,
                      const Vector<Real> &x,
                      Real &tol ) {

    using Teuchos::RCP;  using Teuchos::dyn_cast;

    // Partition vectors and extract subvectors
    const PV &xpv = dyn_cast<const PV>(x);
    const PV &vpv = dyn_cast<const PV>(v);

    RCP<const V> xo = xpv.get(OPT);
    RCP<const V> xs = xpv.get(SLACK);

    RCP<const V> vo = vpv.get(OPT);
    RCP<const V> vs = vpv.get(SLACK);

    PV &jvpv = dyn_cast<PV>(jv);

    RCP<V> jvi = jvpv.get(INEQ);
    incon_->applyJacobian(*jvi, *vo, *xo, tol);
    jvi->axpy(-1.0,*vs);

    if(hasEquality_) {
      RCP<V> jve = jvpv.get(EQUAL);
      eqcon_->applyJacobian(*jve, *vo, *xo, tol);
    }

  }

  void applyAdjointJacobian( Vector<Real> &ajv,
                             const Vector<Real> &v,
                             const Vector<Real> &x,
                             Real &tol ) {

    using Teuchos::RCP;  using Teuchos::dyn_cast;

    // Partition vectors and extract subvectors
    const PV &xpv = dyn_cast<const PV>(x);
    PV &ajvpv = dyn_cast<PV>(ajv);

    RCP<const V> xo = xpv.get(OPT);
    RCP<const V> xs = xpv.get(SLACK);

    RCP<V> ajvo = ajvpv.get(OPT);
    RCP<V> ajvs = ajvpv.get(SLACK);

    const PV &vpv = dyn_cast<const PV>(v);

    RCP<const V> vi = vpv.get(INEQ);

    incon_->applyAdjointJacobian(*ajvo,*vi,*xo,tol);

    ajvs->set(*vi);
    ajvs->scale(-1.0);

    if(hasEquality_) {

      RCP<const V> ve = vpv.get(EQUAL);
      RCP<V> temp = ajvo->clone();
      eqcon_->applyAdjointJacobian(*temp,*ve,*xo,tol);
      ajvo->plus(*temp);

    }

  }

  void applyAdjointHessian( Vector<Real> &ahuv,
                            const Vector<Real> &u,
                            const Vector<Real> &v,
                            const Vector<Real> &x,
                            Real &tol ) {

    using Teuchos::RCP;  using Teuchos::dyn_cast;

    const PV &xpv = dyn_cast<const PV>(x);
    const PV &vpv = dyn_cast<const PV>(v);
    PV &ahuvpv = dyn_cast<PV>(ahuv);

    RCP<const V> xo = xpv.get(OPT);
    RCP<const V> xs = xpv.get(SLACK);

    RCP<const V> vo = vpv.get(OPT);

    RCP<V> ahuvo = ahuvpv.get(OPT);
    RCP<V> ahuvs = ahuvpv.get(SLACK);

    RCP<V> temp = ahuvo->clone();

    const PV &upv = dyn_cast<const PV>(u);

    RCP<const V> ui = upv.get(INEQ);

    incon_->applyAdjointHessian(*ahuvo,*ui,*vo,*xo,tol);
    ahuvs->zero();

    if(hasEquality_) {
      RCP<const V> ue   = upv.get(EQUAL);
      eqcon_->applyAdjointHessian(*temp,*ue,*vo,*xo,tol);
      ahuvo->plus(*temp);
    }

  }

}; // class CompositeConstraint

} // namespace InteriorPoint
} // namespace ROL

#endif