/usr/include/trilinos/ROL_LineSearch.hpp is in libtrilinos-rol-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_LINESEARCH_H
#define ROL_LINESEARCH_H
/** \class ROL::LineSearch
\brief Provides interface for and implements line searches.
*/
#include "Teuchos_RCP.hpp"
#include "Teuchos_ParameterList.hpp"
#include "ROL_Types.hpp"
#include "ROL_Vector.hpp"
#include "ROL_Objective.hpp"
#include "ROL_BoundConstraint.hpp"
#include "ROL_ScalarFunction.hpp"
namespace ROL {
template<class Real>
class LineSearch {
private:
ECurvatureCondition econd_;
EDescent edesc_;
bool useralpha_;
bool usePrevAlpha_; // Use the previous step's accepted alpha as an initial guess
Real alpha0_;
int maxit_;
Real c1_;
Real c2_;
Real c3_;
Real eps_;
Real fmin_; // smallest fval encountered
Real alphaMin_; // Alpha that yields the smallest fval encountered
bool acceptMin_; // Use smallest fval if sufficient decrease not satisfied
bool itcond_; // true if maximum function evaluations reached
Teuchos::RCP<Vector<Real> > xtst_;
Teuchos::RCP<Vector<Real> > d_;
Teuchos::RCP<Vector<Real> > g_;
Teuchos::RCP<Vector<Real> > grad_;
// Teuchos::RCP<const Vector<Real> > grad_;
public:
virtual ~LineSearch() {}
// Constructor
LineSearch( Teuchos::ParameterList &parlist ) : eps_(0) {
Real one(1), p9(0.9), p6(0.6), p4(0.4), oem4(1.e-4), zero(0);
// Enumerations
edesc_ = StringToEDescent(parlist.sublist("Step").sublist("Line Search").sublist("Descent Method").get("Type","Quasi-Newton Method"));
econd_ = StringToECurvatureCondition(parlist.sublist("Step").sublist("Line Search").sublist("Curvature Condition").get("Type","Strong Wolfe Conditions"));
// Linesearch Parameters
alpha0_ = parlist.sublist("Step").sublist("Line Search").get("Initial Step Size",one);
useralpha_ = parlist.sublist("Step").sublist("Line Search").get("User Defined Initial Step Size",false);
usePrevAlpha_ = parlist.sublist("Step").sublist("Line Search").get("Use Previous Step Length as Initial Guess",false);
acceptMin_ = parlist.sublist("Step").sublist("Line Search").get("Accept Linesearch Minimizer",false);
maxit_ = parlist.sublist("Step").sublist("Line Search").get("Function Evaluation Limit",20);
c1_ = parlist.sublist("Step").sublist("Line Search").get("Sufficient Decrease Tolerance",oem4);
c2_ = parlist.sublist("Step").sublist("Line Search").sublist("Curvature Condition").get("General Parameter",p9);
c3_ = parlist.sublist("Step").sublist("Line Search").sublist("Curvature Condition").get("Generalized Wolfe Parameter",p6);
fmin_ = std::numeric_limits<Real>::max();
alphaMin_ = 0;
itcond_ = false;
c1_ = ((c1_ < zero) ? oem4 : c1_);
c2_ = ((c2_ < zero) ? p9 : c2_);
c3_ = ((c3_ < zero) ? p9 : c3_);
if ( c2_ <= c1_ ) {
c1_ = oem4;
c2_ = p9;
}
if ( edesc_ == DESCENT_NONLINEARCG ) {
c2_ = p4;
c3_ = std::min(one-c2_,c3_);
}
}
virtual void initialize( const Vector<Real> &x, const Vector<Real> &s, const Vector<Real> &g,
Objective<Real> &obj, BoundConstraint<Real> &con ) {
grad_ = g.clone();
xtst_ = x.clone();
d_ = s.clone();
g_ = g.clone();
}
virtual void run( Real &alpha, Real &fval, int &ls_neval, int &ls_ngrad,
const Real &gs, const Vector<Real> &s, const Vector<Real> &x,
Objective<Real> &obj, BoundConstraint<Real> &con ) = 0;
// Set epsilon for epsilon active sets
void setData(Real &eps, const Vector<Real> &g) {
eps_ = eps;
grad_->set(g);
}
// use this function to modify alpha and fval if the maximum number of iterations
// are reached
void setMaxitUpdate(Real &alpha, Real &fnew, const Real &fold) {
// Use local minimizer
if( itcond_ && acceptMin_ ) {
alpha = alphaMin_;
fnew = fmin_;
}
// Take no step
else if(itcond_ && !acceptMin_) {
alpha = 0;
fnew = fold;
}
setNextInitialAlpha(alpha);
}
protected:
virtual bool status( const ELineSearch type, int &ls_neval, int &ls_ngrad, const Real alpha,
const Real fold, const Real sgold, const Real fnew,
const Vector<Real> &x, const Vector<Real> &s,
Objective<Real> &obj, BoundConstraint<Real> &con ) {
Real tol = std::sqrt(ROL_EPSILON<Real>()), one(1), two(2);
// Check Armijo Condition
bool armijo = false;
if ( con.isActivated() ) {
Real gs(0);
if ( edesc_ == DESCENT_STEEPEST ) {
updateIterate(*d_,x,s,alpha,con);
d_->scale(-one);
d_->plus(x);
gs = -s.dot(*d_);
}
else {
d_->set(s);
d_->scale(-one);
con.pruneActive(*d_,grad_->dual(),x,eps_);
gs = alpha*(grad_)->dot(d_->dual());
d_->zero();
updateIterate(*d_,x,s,alpha,con);
d_->scale(-one);
d_->plus(x);
con.pruneInactive(*d_,grad_->dual(),x,eps_);
gs += d_->dot(grad_->dual());
}
if ( fnew <= fold - c1_*gs ) {
armijo = true;
}
}
else {
if ( fnew <= fold + c1_*alpha*sgold ) {
armijo = true;
}
}
// Check Maximum Iteration
itcond_ = false;
if ( ls_neval >= maxit_ ) {
itcond_ = true;
}
// Check Curvature Condition
bool curvcond = false;
if ( armijo && ((type != LINESEARCH_BACKTRACKING && type != LINESEARCH_CUBICINTERP) ||
(edesc_ == DESCENT_NONLINEARCG)) ) {
if (econd_ == CURVATURECONDITION_GOLDSTEIN) {
if (fnew >= fold + (one-c1_)*alpha*sgold) {
curvcond = true;
}
}
else if (econd_ == CURVATURECONDITION_NULL) {
curvcond = true;
}
else {
updateIterate(*xtst_,x,s,alpha,con);
obj.update(*xtst_);
obj.gradient(*g_,*xtst_,tol);
Real sgnew(0);
if ( con.isActivated() ) {
d_->set(s);
d_->scale(-alpha);
con.pruneActive(*d_,s,x);
sgnew = -d_->dot(g_->dual());
}
else {
sgnew = s.dot(g_->dual());
}
ls_ngrad++;
if ( ((econd_ == CURVATURECONDITION_WOLFE)
&& (sgnew >= c2_*sgold))
|| ((econd_ == CURVATURECONDITION_STRONGWOLFE)
&& (std::abs(sgnew) <= c2_*std::abs(sgold)))
|| ((econd_ == CURVATURECONDITION_GENERALIZEDWOLFE)
&& (c2_*sgold <= sgnew && sgnew <= -c3_*sgold))
|| ((econd_ == CURVATURECONDITION_APPROXIMATEWOLFE)
&& (c2_*sgold <= sgnew && sgnew <= (two*c1_ - one)*sgold)) ) {
curvcond = true;
}
}
}
if(fnew<fmin_) {
fmin_ = fnew;
alphaMin_ = alpha;
}
if (type == LINESEARCH_BACKTRACKING || type == LINESEARCH_CUBICINTERP) {
if (edesc_ == DESCENT_NONLINEARCG) {
return ((armijo && curvcond) || itcond_);
}
else {
return (armijo || itcond_);
}
}
else {
return ((armijo && curvcond) || itcond_);
}
}
virtual Real getInitialAlpha(int &ls_neval, int &ls_ngrad, const Real fval, const Real gs,
const Vector<Real> &x, const Vector<Real> &s,
Objective<Real> &obj, BoundConstraint<Real> &con) {
Real val(1), one(1), half(0.5), p1(1.e-1);
if (useralpha_ || usePrevAlpha_ ) {
val = alpha0_;
}
else {
if (edesc_ == DESCENT_STEEPEST || edesc_ == DESCENT_NONLINEARCG) {
Real tol = std::sqrt(ROL_EPSILON<Real>());
// Evaluate objective at x + s
updateIterate(*d_,x,s,one,con);
obj.update(*d_);
Real fnew = obj.value(*d_,tol);
ls_neval++;
// Minimize quadratic interpolate to compute new alpha
Real denom = (fnew - fval - gs);
Real alpha = ((denom > ROL_EPSILON<Real>()) ? -half*gs/denom : one);
val = ((alpha > p1) ? alpha : one);
alpha0_ = val;
useralpha_ = true;
}
else {
val = one;
}
}
return val;
}
void setNextInitialAlpha( Real alpha ) {
if( usePrevAlpha_ ) {
alpha0_ = alpha;
}
}
void updateIterate(Vector<Real> &xnew, const Vector<Real> &x, const Vector<Real> &s, Real alpha,
BoundConstraint<Real> &con ) {
xnew.set(x);
xnew.axpy(alpha,s);
if ( con.isActivated() ) {
con.project(xnew);
}
}
bool useLocalMinimizer() {
return itcond_ && acceptMin_;
}
bool takeNoStep() {
return itcond_ && !acceptMin_;
}
};
}
#include "ROL_LineSearchFactory.hpp"
#endif
|