/usr/include/trilinos/ROL_LineSearchStep.hpp is in libtrilinos-rol-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_LINESEARCHSTEP_H
#define ROL_LINESEARCHSTEP_H
#include "ROL_Types.hpp"
#include "ROL_HelperFunctions.hpp"
#include "ROL_Step.hpp"
#include "ROL_LineSearch.hpp"
// Unconstrained Methods
#include "ROL_GradientStep.hpp"
#include "ROL_NonlinearCGStep.hpp"
#include "ROL_SecantStep.hpp"
#include "ROL_NewtonStep.hpp"
#include "ROL_NewtonKrylovStep.hpp"
// Bound Constrained Methods
#include "ROL_ProjectedSecantStep.hpp"
#include "ROL_ProjectedNewtonStep.hpp"
#include "ROL_ProjectedNewtonKrylovStep.hpp"
#include <sstream>
#include <iomanip>
/** @ingroup step_group
\class ROL::LineSearchStep
\brief Provides the interface to compute optimization steps
with line search.
Suppose \f$\mathcal{X}\f$ is a Hilbert space of
functions mapping \f$\Xi\f$ to \f$\mathbb{R}\f$. For example,
\f$\Xi\subset\mathbb{R}^n\f$ and \f$\mathcal{X}=L^2(\Xi)\f$ or
\f$\Xi = \{1,\ldots,n\}\f$ and \f$\mathcal{X}=\mathbb{R}^n\f$. We
assume \f$f:\mathcal{X}\to\mathbb{R}\f$ is twice-continuously Fréchet
differentiable and \f$a,\,b\in\mathcal{X}\f$ with \f$a\le b\f$ almost
everywhere in \f$\Xi\f$. Note that these line-search algorithms will also work
with secant approximations of the Hessian.
This step applies to unconstrained and bound constrained optimization problems,
\f[
\min_x\quad f(x) \qquad\text{and}\qquad \min_x\quad f(x)\quad\text{s.t.}\quad a\le x\le b,
\f]
respectively.
For unconstrained problems, given the \f$k\f$-th iterate \f$x_k\f$ and a descent direction
\f$s_k\f$, the line search approximately minimizes the 1D objective function
\f$\phi_k(t) = f(x_k + t s_k)\f$. The approximate minimizer \f$t\f$ must satisfy
sufficient decrease and curvature conditions into guarantee global convergence. The
sufficient decrease condition (often called the Armijo condition) is
\f[
\phi_k(t) \le \phi_k(0) + c_1 t \phi_k'(0) \qquad\iff\qquad
f(x_k+ts_k) \le f(x_k) + c_1 t \langle \nabla f(x_k),s_k\rangle_{\mathcal{X}}
\f]
where \f$0 < c_1 < 1\f$. The curvature conditions implemented in ROL include:
<CENTER>
| Name | Condition | Parameters |
| :---------------- | :-----------------------------------------------------------: | :---------------------: |
| Wolfe | \f$\phi_k'(t) \ge c_2\phi_k'(0)\f$ | \f$c_1<c_2<1\f$ |
| Strong Wolfe | \f$\left|\phi_k'(t)\right| \le c_2 \left|\phi_k'(0)\right|\f$ | \f$c_1<c_2<1\f$ |
| Generalized Wolfe | \f$c_2\phi_k'(0)\le \phi_k'(t)\le-c_3\phi_k'(0)\f$ | \f$0<c_3<1\f$ |
| Approximate Wolfe | \f$c_2\phi_k'(0)\le \phi_k'(t)\le(2c_1-1)\phi_k'(0)\f$ | \f$c_1<c_2<1\f$ |
| Goldstein | \f$\phi_k(0)+(1-c_1)t\phi_k'(0)\le \phi_k(t)\f$ | \f$0<c_1<\frac{1}{2}\f$ |
</CENTER>
Note that \f$\phi_k'(t) = \langle \nabla f(x_k+ts_k),s_k\rangle_{\mathcal{X}}\f$.
For bound constrained problems, the line-search step performs a projected search. That is,
the line search approximately minimizes the 1D objective function
\f$\phi_k(t) = f(P_{[a,b]}(x_k+ts_k))\f$ where \f$P_{[a,b]}\f$ denotes the projection onto
the upper and lower bounds. Such line-search algorithms correspond to projected gradient
and projected Newton-type algorithms.
For projected methods, we require the notion of an active set of an iterate \f$x_k\f$,
\f[
\mathcal{A}_k = \{\, \xi\in\Xi\,:\,x_k(\xi) = a(\xi)\,\}\cap
\{\, \xi\in\Xi\,:\,x_k(\xi) = b(\xi)\,\}.
\f]
Given \f$\mathcal{A}_k\f$ and a search direction \f$s_k\f$, we define the binding set as
\f[
\mathcal{B}_k = \{\, \xi\in\Xi\,:\,x_k(\xi) = a(\xi) \;\text{and}\; s_k(\xi) < 0 \,\}\cap
\{\, \xi\in\Xi\,:\,x_k(\xi) = b(\xi) \;\text{and}\; s_k(\xi) > 0 \,\}.
\f]
The binding set contains the values of \f$\xi\in\Xi\f$ such that if \f$x_k(\xi)\f$ is on a
bound, then \f$(x_k+s_k)(\xi)\f$ will violate bound. Using these definitions, we can
redefine the sufficient decrease and curvature conditions from the unconstrained case to
the case of bound constraints.
LineSearchStep implements a number of algorithms for both bound constrained and unconstrained
optimization. These algorithms are: Steepest descent; Nonlinear CG; Quasi-Newton methods;
Inexact Newton methods; Newton's method. These methods are chosen through the EDescent enum.
*/
namespace ROL {
template <class Real>
class LineSearchStep : public Step<Real> {
private:
Teuchos::RCP<Step<Real> > desc_; ///< Unglobalized step object
Teuchos::RCP<Secant<Real> > secant_; ///< Secant object (used for quasi-Newton)
Teuchos::RCP<Krylov<Real> > krylov_; ///< Krylov solver object (used for inexact Newton)
Teuchos::RCP<NonlinearCG<Real> > nlcg_; ///< Nonlinear CG object (used for nonlinear CG)
Teuchos::RCP<LineSearch<Real> > lineSearch_; ///< Line-search object
Teuchos::RCP<Vector<Real> > d_;
ELineSearch els_; ///< enum determines type of line search
ECurvatureCondition econd_; ///< enum determines type of curvature condition
bool acceptLastAlpha_; ///< For backwards compatibility. When max function evaluations are reached take last step
bool usePreviousAlpha_; ///< If true, use the previously accepted step length (if any) as the new initial step length
int verbosity_;
bool computeObj_;
Real fval_;
Teuchos::ParameterList parlist_;
std::string lineSearchName_;
Real GradDotStep(const Vector<Real> &g, const Vector<Real> &s,
const Vector<Real> &x,
BoundConstraint<Real> &bnd, Real eps = 0) {
Real gs(0), one(1);
if (!bnd.isActivated()) {
gs = s.dot(g.dual());
}
else {
d_->set(s);
bnd.pruneActive(*d_,g,x,eps);
gs = d_->dot(g.dual());
d_->set(x);
d_->axpy(-one,g.dual());
bnd.project(*d_);
d_->scale(-one);
d_->plus(x);
bnd.pruneInactive(*d_,g,x,eps);
gs -= d_->dot(g.dual());
}
return gs;
}
public:
using Step<Real>::initialize;
using Step<Real>::compute;
using Step<Real>::update;
/** \brief Constructor.
Standard constructor to build a LineSearchStep object. Algorithmic
specifications are passed in through a Teuchos::ParameterList. The
line-search type, secant type, Krylov type, or nonlinear CG type can
be set using user-defined objects.
@param[in] parlist is a parameter list containing algorithmic specifications
@param[in] lineSearch is a user-defined line search object
@param[in] secant is a user-defined secant object
@param[in] krylov is a user-defined Krylov object
@param[in] nlcg is a user-defined Nonlinear CG object
*/
LineSearchStep( Teuchos::ParameterList &parlist,
const Teuchos::RCP<LineSearch<Real> > &lineSearch = Teuchos::null,
const Teuchos::RCP<Secant<Real> > &secant = Teuchos::null,
const Teuchos::RCP<Krylov<Real> > &krylov = Teuchos::null,
const Teuchos::RCP<NonlinearCG<Real> > &nlcg = Teuchos::null )
: Step<Real>(), desc_(Teuchos::null), secant_(secant),
krylov_(krylov), nlcg_(nlcg), lineSearch_(lineSearch),
els_(LINESEARCH_USERDEFINED), econd_(CURVATURECONDITION_WOLFE),
verbosity_(0), computeObj_(true), fval_(0), parlist_(parlist) {
// Parse parameter list
Teuchos::ParameterList& Llist = parlist.sublist("Step").sublist("Line Search");
Teuchos::ParameterList& Glist = parlist.sublist("General");
econd_ = StringToECurvatureCondition(Llist.sublist("Curvature Condition").get("Type","Strong Wolfe Conditions") );
acceptLastAlpha_ = Llist.get("Accept Last Alpha", false);
verbosity_ = Glist.get("Print Verbosity",0);
computeObj_ = Glist.get("Recompute Objective Function",true);
// Initialize Line Search
if (lineSearch_ == Teuchos::null) {
lineSearchName_ = Llist.sublist("Line-Search Method").get("Type","Cubic Interpolation");
els_ = StringToELineSearch(lineSearchName_);
lineSearch_ = LineSearchFactory<Real>(parlist);
}
else { // User-defined linesearch provided
lineSearchName_ = Llist.sublist("Line-Search Method").get("User Defined Line-Search Name",
"Unspecified User Defined Line-Search");
}
}
void initialize( Vector<Real> &x, const Vector<Real> &s, const Vector<Real> &g,
Objective<Real> &obj, BoundConstraint<Real> &bnd,
AlgorithmState<Real> &algo_state ) {
d_ = x.clone();
// Initialize unglobalized step
Teuchos::ParameterList& list
= parlist_.sublist("Step").sublist("Line Search").sublist("Descent Method");
EDescent edesc = StringToEDescent(list.get("Type","Quasi-Newton Method") );
if (bnd.isActivated()) {
switch(edesc) {
case DESCENT_STEEPEST: {
desc_ = Teuchos::rcp(new GradientStep<Real>(parlist_,computeObj_));
break;
}
case DESCENT_NONLINEARCG: {
desc_ = Teuchos::rcp(new NonlinearCGStep<Real>(parlist_,nlcg_,computeObj_));
break;
}
case DESCENT_SECANT: {
desc_ = Teuchos::rcp(new ProjectedSecantStep<Real>(parlist_,secant_,computeObj_));
break;
}
case DESCENT_NEWTON: {
desc_ = Teuchos::rcp(new ProjectedNewtonStep<Real>(parlist_,computeObj_));
break;
}
case DESCENT_NEWTONKRYLOV: {
desc_ = Teuchos::rcp(new ProjectedNewtonKrylovStep<Real>(parlist_,krylov_,secant_,computeObj_));
break;
}
default:
TEUCHOS_TEST_FOR_EXCEPTION(true,std::invalid_argument,
">>> (LineSearchStep::Initialize): Undefined descent type!");
}
}
else {
switch(edesc) {
case DESCENT_STEEPEST: {
desc_ = Teuchos::rcp(new GradientStep<Real>(parlist_,computeObj_));
break;
}
case DESCENT_NONLINEARCG: {
desc_ = Teuchos::rcp(new NonlinearCGStep<Real>(parlist_,nlcg_,computeObj_));
break;
}
case DESCENT_SECANT: {
desc_ = Teuchos::rcp(new SecantStep<Real>(parlist_,secant_,computeObj_));
break;
}
case DESCENT_NEWTON: {
desc_ = Teuchos::rcp(new NewtonStep<Real>(parlist_,computeObj_));
break;
}
case DESCENT_NEWTONKRYLOV: {
desc_ = Teuchos::rcp(new NewtonKrylovStep<Real>(parlist_,krylov_,secant_,computeObj_));
break;
}
default:
TEUCHOS_TEST_FOR_EXCEPTION(true,std::invalid_argument,
">>> (LineSearchStep::Initialize): Undefined descent type!");
}
}
desc_->initialize(x,s,g,obj,bnd,algo_state);
// Initialize line search
lineSearch_->initialize(x,s,g,obj,bnd);
//const Teuchos::RCP<const StepState<Real> > desc_state = desc_->getStepState();
//lineSearch_->initialize(x,s,*(desc_state->gradientVec),obj,bnd);
}
/** \brief Compute step.
Computes a trial step, \f$s_k\f$ as defined by the enum EDescent. Once the
trial step is determined, this function determines an approximate minimizer
of the 1D function \f$\phi_k(t) = f(x_k+ts_k)\f$. This approximate
minimizer must satisfy sufficient decrease and curvature conditions.
@param[out] s is the computed trial step
@param[in] x is the current iterate
@param[in] obj is the objective function
@param[in] bnd are the bound constraints
@param[in] algo_state contains the current state of the algorithm
*/
void compute( Vector<Real> &s, const Vector<Real> &x,
Objective<Real> &obj, BoundConstraint<Real> &bnd,
AlgorithmState<Real> &algo_state ) {
Real zero(0), one(1);
// Compute unglobalized step
desc_->compute(s,x,obj,bnd,algo_state);
// Ensure that s is a descent direction
// ---> If not, then default to steepest descent
const Teuchos::RCP<const StepState<Real> > desc_state = desc_->getStepState();
Real gs = GradDotStep(*(desc_state->gradientVec),s,x,bnd,algo_state.gnorm);
if (gs >= zero) {
s.set((desc_state->gradientVec)->dual());
s.scale(-one);
gs = GradDotStep(*(desc_state->gradientVec),s,x,bnd,algo_state.gnorm);
}
// Perform line search
Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
fval_ = algo_state.value;
step_state->nfval = 0; step_state->ngrad = 0;
lineSearch_->setData(algo_state.gnorm,*(desc_state->gradientVec));
lineSearch_->run(step_state->searchSize,fval_,step_state->nfval,step_state->ngrad,gs,s,x,obj,bnd);
// Make correction if maximum function evaluations reached
if(!acceptLastAlpha_) {
lineSearch_->setMaxitUpdate(step_state->searchSize,fval_,algo_state.value);
}
// Compute scaled descent direction
s.scale(step_state->searchSize);
if ( bnd.isActivated() ) {
s.plus(x);
bnd.project(s);
s.axpy(static_cast<Real>(-1),x);
}
}
/** \brief Update step, if successful.
Given a trial step, \f$s_k\f$, this function updates \f$x_{k+1}=x_k+s_k\f$.
This function also updates the secant approximation.
@param[in,out] x is the updated iterate
@param[in] s is the computed trial step
@param[in] obj is the objective function
@param[in] con are the bound constraints
@param[in] algo_state contains the current state of the algorithm
*/
void update( Vector<Real> &x, const Vector<Real> &s,
Objective<Real> &obj, BoundConstraint<Real> &bnd,
AlgorithmState<Real> &algo_state ) {
Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
algo_state.nfval += step_state->nfval;
algo_state.ngrad += step_state->ngrad;
desc_->update(x,s,obj,bnd,algo_state);
if ( !computeObj_ ) {
algo_state.value = fval_;
}
}
/** \brief Print iterate header.
This function produces a string containing header information.
*/
std::string printHeader( void ) const {
std::string head = desc_->printHeader();
head.erase(std::remove(head.end()-3,head.end(),'\n'), head.end());
std::stringstream hist;
hist.write(head.c_str(),head.length());
hist << std::setw(10) << std::left << "ls_#fval";
hist << std::setw(10) << std::left << "ls_#grad";
hist << "\n";
return hist.str();
}
/** \brief Print step name.
This function produces a string containing the algorithmic step information.
*/
std::string printName( void ) const {
std::string name = desc_->printName();
std::stringstream hist;
hist << name;
hist << "Line Search: " << lineSearchName_;
hist << " satisfying " << ECurvatureConditionToString(econd_) << "\n";
return hist.str();
}
/** \brief Print iterate status.
This function prints the iteration status.
@param[in] algo_state is the current state of the algorithm
@param[in] printHeader if ste to true will print the header at each iteration
*/
std::string print( AlgorithmState<Real> & algo_state, bool print_header = false ) const {
const Teuchos::RCP<const StepState<Real> > step_state = Step<Real>::getStepState();
std::string desc = desc_->print(algo_state,false);
desc.erase(std::remove(desc.end()-3,desc.end(),'\n'), desc.end());
std::string name = desc_->printName();
size_t pos = desc.find(name);
if ( pos != std::string::npos ) {
desc.erase(pos, name.length());
}
std::stringstream hist;
if ( algo_state.iter == 0 ) {
hist << printName();
}
if ( print_header ) {
hist << printHeader();
}
hist << desc;
if ( algo_state.iter == 0 ) {
hist << "\n";
}
else {
hist << std::setw(10) << std::left << step_state->nfval;
hist << std::setw(10) << std::left << step_state->ngrad;
hist << "\n";
}
return hist.str();
}
}; // class LineSearchStep
} // namespace ROL
#endif
|