This file is indexed.

/usr/include/trilinos/ROL_MeanDeviation.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_MEANDEVIATION_HPP
#define ROL_MEANDEVIATION_HPP

#include "ROL_RiskMeasure.hpp"
#include "ROL_PositiveFunction.hpp"
#include "ROL_PlusFunction.hpp"
#include "ROL_AbsoluteValue.hpp"

#include "Teuchos_ParameterList.hpp"
#include "Teuchos_Array.hpp"

/** @ingroup risk_group
    \class ROL::MeanDeviation
    \brief Provides an interface for the mean plus a sum of arbitrary order
    deviations.

    The mean plus deviations risk measure is
    \f[
       \mathcal{R}(X) = \mathbb{E}[X]
        + \sum_{k=1}^n c_k \mathbb{E}[\wp(X-\mathbb{E}[X])^{p_k}]^{1/p_k}
    \f]
    where \f$\wp:\mathbb{R}\to[0,\infty)\f$ is either the absolute value
    or \f$(x)_+ = \max\{0,x\}\f$, \f$c_k > 0\f$ and \f$p_k\in\mathbb{N}\f$.
    In general, \f$\mathcal{R}\f$ is law-invariant, but not coherent.
    In the specific case that \f$\wp(x) = (x)_+\f$ and \f$c_k\in[0,1]\f$,
    \f$\mathcal{R}\f$ is coherent.  On the other hand,
    the common mean-plus-standard-deviation risk measure (i.e.,
    \f$\wp(x) = |x|\f$, \f$n=1\f$ and \f$p_1 = 2\f$) is not coherent since
    it violates monotonicity.

    When using derivative-based optimization, the user can
    provide a smooth approximation of \f$(\cdot)_+\f$ using the
    ROL::PositiveFunction class.
*/

namespace ROL {

template<class Real>
class MeanDeviation : public RiskMeasure<Real> {
  typedef typename std::vector<Real>::size_type uint;
private:

  Teuchos::RCP<PositiveFunction<Real> > positiveFunction_;

  Teuchos::RCP<Vector<Real> > dualVector1_;
  Teuchos::RCP<Vector<Real> > dualVector2_;

  std::vector<Real> order_;
  std::vector<Real> coeff_;
  uint NumMoments_;

  std::vector<Real> weights_;
  std::vector<Real> value_storage_;
  std::vector<Real> gradvec_storage_;
  std::vector<Teuchos::RCP<Vector<Real> > > gradient_storage_;
  std::vector<Teuchos::RCP<Vector<Real> > > hessvec_storage_;

  std::vector<Real> dev0_;
  std::vector<Real> dev1_;
  std::vector<Real> dev2_;
  std::vector<Real> dev3_;
  std::vector<Real> des0_;
  std::vector<Real> des1_;
  std::vector<Real> des2_;
  std::vector<Real> des3_;
  std::vector<Real> devp_;
  std::vector<Real> gvp1_;
  std::vector<Real> gvp2_;
  std::vector<Real> gvp3_;
  std::vector<Real> gvs1_;
  std::vector<Real> gvs2_;
  std::vector<Real> gvs3_;

  bool firstReset_;

  void initialize(void) {
    dev0_.clear(); dev1_.clear(); dev2_.clear(); dev3_.clear();
    des0_.clear(); des1_.clear(); des2_.clear(); des3_.clear();
    devp_.clear();
    gvp1_.clear(); gvp2_.clear(); gvp3_.clear();
    gvs1_.clear(); gvs2_.clear(); gvs3_.clear();

    dev0_.resize(NumMoments_); dev1_.resize(NumMoments_);
    dev2_.resize(NumMoments_); dev3_.resize(NumMoments_);
    des0_.resize(NumMoments_); des1_.resize(NumMoments_);
    des2_.resize(NumMoments_); des3_.resize(NumMoments_);
    devp_.resize(NumMoments_);
    gvp1_.resize(NumMoments_); gvp2_.resize(NumMoments_);
    gvp3_.resize(NumMoments_);
    gvs1_.resize(NumMoments_); gvs2_.resize(NumMoments_);
    gvs3_.resize(NumMoments_);
  }

  void clear(void) {
    Real zero(0);
    dev0_.assign(NumMoments_,zero); dev1_.assign(NumMoments_,zero);
    dev2_.assign(NumMoments_,zero); dev3_.assign(NumMoments_,zero);
    des0_.assign(NumMoments_,zero); des1_.assign(NumMoments_,zero);
    des2_.assign(NumMoments_,zero); des3_.assign(NumMoments_,zero);
    devp_.assign(NumMoments_,zero);
    gvp1_.assign(NumMoments_,zero); gvp2_.assign(NumMoments_,zero);
    gvp3_.assign(NumMoments_,zero);
    gvs1_.assign(NumMoments_,zero); gvs2_.assign(NumMoments_,zero);
    gvs3_.assign(NumMoments_,zero);

    value_storage_.clear();
    gradient_storage_.clear();
    gradvec_storage_.clear();
    hessvec_storage_.clear();
    weights_.clear();
  }

  void checkInputs(void) const {
    int oSize = order_.size(), cSize = coeff_.size();
    TEUCHOS_TEST_FOR_EXCEPTION((oSize!=cSize),std::invalid_argument,
      ">>> ERROR (ROL::MeanDeviation): Order and coefficient arrays have different sizes!");
    Real zero(0), two(2);
    for (int i = 0; i < oSize; i++) {
      TEUCHOS_TEST_FOR_EXCEPTION((order_[i] < two), std::invalid_argument,
        ">>> ERROR (ROL::MeanDeviation): Element of order array out of range!");
      TEUCHOS_TEST_FOR_EXCEPTION((coeff_[i] < zero), std::invalid_argument,
        ">>> ERROR (ROL::MeanDeviation): Element of coefficient array out of range!");
    }
    TEUCHOS_TEST_FOR_EXCEPTION(positiveFunction_ == Teuchos::null, std::invalid_argument,
      ">>> ERROR (ROL::MeanDeviation): PositiveFunction pointer is null!");
  }

public:
  /** \brief Constructor.

      @param[in]     order   is the deviation order
      @param[in]     coeff   is the weight for deviation term
      @param[in]     pf      is the plus function or an approximation

      This constructor produces a mean plus deviation risk measure
      with a single deviation.
  */
  MeanDeviation( const Real order, const Real coeff,
                 const Teuchos::RCP<PositiveFunction<Real> > &pf )
    : RiskMeasure<Real>(), positiveFunction_(pf), firstReset_(true) {
    order_.clear(); order_.push_back(order);
    coeff_.clear(); coeff_.push_back(coeff);
    checkInputs();
    NumMoments_ = order_.size();
    initialize();
  }

  /** \brief Constructor.

      @param[in]     order   is a vector of deviation orders
      @param[in]     coeff   is a vector of weights for the deviation terms
      @param[in]     pf      is the plus function or an approximation

      This constructor produces a mean plus deviation risk measure
      with an arbitrary number of deviations.
  */
  MeanDeviation( const std::vector<Real> &order,
                 const std::vector<Real> &coeff, 
                 const Teuchos::RCP<PositiveFunction<Real> > &pf )
    : RiskMeasure<Real>(), positiveFunction_(pf), firstReset_(true) {
    order_.clear(); coeff_.clear();
    for ( uint i = 0; i < order.size(); i++ ) {
      order_.push_back(order[i]);
    }
    for ( uint i = 0; i < coeff.size(); i++ ) {
      coeff_.push_back(coeff[i]);
    }
    checkInputs();
    NumMoments_ = order_.size();
    initialize();
  }

  /** \brief Constructor.

      @param[in]     parlist is a parameter list specifying inputs

      parlist should contain sublists "SOL"->"Risk Measure"->"Mean Plus Deviation" and
      within the "Mean Plus Deviation" sublist should have the following parameters
      \li "Orders" (array of unsigned integers)
      \li "Coefficients" (array of positive scalars)
      \li "Deviation Type" (eighter "Upper" or "Absolute")
      \li A sublist for positive function information.
  */
  MeanDeviation( Teuchos::ParameterList &parlist )
    : RiskMeasure<Real>(), firstReset_(true) {
    Teuchos::ParameterList &list
      = parlist.sublist("SOL").sublist("Risk Measure").sublist("Mean Plus Deviation");
    // Get data from parameter list
    Teuchos::Array<Real> order
      = Teuchos::getArrayFromStringParameter<double>(list,"Orders");
    order_ = order.toVector();
    Teuchos::Array<Real> coeff
      = Teuchos::getArrayFromStringParameter<double>(list,"Coefficients");
    coeff_ = coeff.toVector();
    // Build (approximate) positive function
    std::string type = list.get<std::string>("Deviation Type");
    if ( type == "Upper" ) {
      positiveFunction_ = Teuchos::rcp(new PlusFunction<Real>(list));
    }
    else if ( type == "Absolute" ) {
      positiveFunction_ = Teuchos::rcp(new AbsoluteValue<Real>(list));
    }
    else {
      TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument,
        ">>> (ROL::MeanDeviation): Deviation type is not recoginized!");
    }
    // Check inputs
    checkInputs();
    NumMoments_ = order.size();
    initialize();
  }

  void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x) {
    RiskMeasure<Real>::reset(x0,x);
    if ( firstReset_ ) {
      dualVector1_ = (x0->dual()).clone();
      dualVector2_ = (x0->dual()).clone();
      firstReset_  = false;
    }
    dualVector1_->zero(); dualVector2_->zero();
    clear();
  }
    
  void reset(Teuchos::RCP<Vector<Real> > &x0, const Vector<Real> &x,
             Teuchos::RCP<Vector<Real> > &v0, const Vector<Real> &v) {
    reset(x0,x);
    v0 = Teuchos::rcp_const_cast<Vector<Real> >(Teuchos::dyn_cast<const RiskVector<Real> >(
           Teuchos::dyn_cast<const Vector<Real> >(v)).getVector());
  }
  
  void update(const Real val, const Real weight) {
    RiskMeasure<Real>::val_ += weight * val;
    value_storage_.push_back(val);
    weights_.push_back(weight);    
  }

  void update(const Real val, const Vector<Real> &g, const Real weight) {
    RiskMeasure<Real>::val_ += weight * val;
    RiskMeasure<Real>::g_->axpy(weight,g);
    value_storage_.push_back(val);
    gradient_storage_.push_back(g.clone());
    typename std::vector<Teuchos::RCP<Vector<Real> > >::iterator it = gradient_storage_.end();
    it--;
    (*it)->set(g);
    weights_.push_back(weight);    
  }

  void update(const Real val, const Vector<Real> &g, const Real gv, const Vector<Real> &hv,
              const Real weight) {
    RiskMeasure<Real>::val_ += weight * val;
    RiskMeasure<Real>::gv_  += weight * gv;
    RiskMeasure<Real>::g_->axpy(weight,g);
    RiskMeasure<Real>::hv_->axpy(weight,hv);
    value_storage_.push_back(val);
    gradient_storage_.push_back(g.clone());
    typename std::vector<Teuchos::RCP<Vector<Real> > >::iterator it = gradient_storage_.end();
    it--;
    (*it)->set(g);
    gradvec_storage_.push_back(gv);
    hessvec_storage_.push_back(hv.clone());
    it = hessvec_storage_.end();
    it--;
    (*it)->set(hv);
    weights_.push_back(weight);
  }

  Real getValue(SampleGenerator<Real> &sampler) {
    // Compute expected value
    Real val = RiskMeasure<Real>::val_, ev(0);
    sampler.sumAll(&val,&ev,1);
    // Compute deviation
    Real diff(0), pf0(0), dev(0), one(1);
    for ( uint i = 0; i < weights_.size(); i++ ) {
      diff = value_storage_[i]-ev;
      pf0  = positiveFunction_->evaluate(diff,0);
      for ( uint p = 0; p < NumMoments_; p++ ) {
        dev0_[p] += std::pow(pf0,order_[p]) * weights_[i];
      }
    }
    sampler.sumAll(&dev0_[0],&des0_[0],NumMoments_);
    for ( uint p = 0; p < NumMoments_; p++ ) {
      dev += coeff_[p]*std::pow(des0_[p],one/order_[p]);
    }
    // Return mean plus deviation
    return ev + dev;
  }

  void getGradient(Vector<Real> &g, SampleGenerator<Real> &sampler) {
    // Compute expected value
    Real val = RiskMeasure<Real>::val_, ev(0);
    sampler.sumAll(&val,&ev,1);
    // Compute deviation
    Real diff(0), pf0(0), pf1(0), c(0), one(1), zero(0);
    for ( uint i = 0; i < weights_.size(); i++ ) {
      diff = value_storage_[i]-ev;
      pf0  = positiveFunction_->evaluate(diff,0);
      pf1  = positiveFunction_->evaluate(diff,1);
      for ( uint p = 0; p < NumMoments_; p++ ) {
        dev0_[p] += weights_[i] * std::pow(pf0,order_[p]);
        dev1_[p] += weights_[i] * std::pow(pf0,order_[p]-one) * pf1;
      }
    }
    sampler.sumAll(&dev0_[0],&des0_[0],NumMoments_);
    sampler.sumAll(&dev1_[0],&des1_[0],NumMoments_);
    for ( uint p = 0; p < NumMoments_; p++ ) {
      dev0_[p] = std::pow(des0_[p],one-one/order_[p]);
    }
    // Compute derivative
    for ( uint i = 0; i < weights_.size(); i++ ) {
      c    = zero;
      diff = value_storage_[i]-ev;
      pf0 = positiveFunction_->evaluate(diff,0);
      pf1 = positiveFunction_->evaluate(diff,1);
      for ( uint p = 0; p < NumMoments_; p++ ) {
        if ( dev0_[p] > zero ) {
          c += coeff_[p]/dev0_[p] * (std::pow(pf0,order_[p]-one)*pf1 - des1_[p]);
        }
      }
      dualVector1_->axpy(weights_[i]*c,*(gradient_storage_[i]));
    }
    dualVector1_->plus(*(RiskMeasure<Real>::g_));
    sampler.sumAll(*dualVector1_,*dualVector2_);
    // Set RiskVector
    (Teuchos::dyn_cast<RiskVector<Real> >(g)).setVector(*dualVector2_);
  }

  void getHessVec(Vector<Real> &hv, SampleGenerator<Real> &sampler) {
    // Compute expected value
    std::vector<Real> myval(2), val(2);
    myval[0] = RiskMeasure<Real>::val_;
    myval[1] = RiskMeasure<Real>::gv_;
    sampler.sumAll(&myval[0],&val[0],2);
    Real ev = val[0], egv = val[1];
    // Compute deviation
    Real diff(0), pf0(0), pf1(0), pf2(0), zero(0), one(1), two(2);
    Real cg(0), ch(0), diff1(0), diff2(0), diff3(0);
    for ( uint i = 0; i < weights_.size(); i++ ) {
      diff = value_storage_[i]-ev;
      pf0  = positiveFunction_->evaluate(diff,0);
      pf1  = positiveFunction_->evaluate(diff,1);
      pf2  = positiveFunction_->evaluate(diff,2);
      for ( uint p = 0; p < NumMoments_; p++ ) {
        dev0_[p] += weights_[i] * std::pow(pf0,order_[p]);
        dev1_[p] += weights_[i] * std::pow(pf0,order_[p]-one) * pf1;
        dev2_[p] += weights_[i] * std::pow(pf0,order_[p]-two) * pf1 * pf1;
        dev3_[p] += weights_[i] * std::pow(pf0,order_[p]-one) * pf2;
      }
    }
    sampler.sumAll(&dev0_[0],&des0_[0],NumMoments_);
    sampler.sumAll(&dev1_[0],&des1_[0],NumMoments_);
    sampler.sumAll(&dev2_[0],&des2_[0],NumMoments_);
    sampler.sumAll(&dev3_[0],&des3_[0],NumMoments_);
    for ( uint p = 0; p < NumMoments_; p++ ) {
      devp_[p] = std::pow(des0_[p],two-one/order_[p]);
      dev0_[p] = std::pow(des0_[p],one-one/order_[p]);
    }
    for ( uint i = 0; i < value_storage_.size(); i++ ) {
      diff = value_storage_[i]-ev;
      pf0  = positiveFunction_->evaluate(diff,0);
      pf1  = positiveFunction_->evaluate(diff,1);
      pf2  = positiveFunction_->evaluate(diff,2);
      for ( uint p = 0; p < NumMoments_; p++ ) {
        gvp1_[p] += weights_[i] * (std::pow(pf0,order_[p]-one)*pf1-des1_[p]) *
                     (gradvec_storage_[i] - egv);
        gvp2_[p] += weights_[i] * (std::pow(pf0,order_[p]-two)*pf1*pf1-des2_[p]) *
                     (gradvec_storage_[i] - egv);
        gvp3_[p] += weights_[i] * (std::pow(pf0,order_[p]-one)*pf2-des3_[p]) *
                     (gradvec_storage_[i] - egv);
      }
    }
    sampler.sumAll(&gvp1_[0],&gvs1_[0],NumMoments_);
    sampler.sumAll(&gvp2_[0],&gvs2_[0],NumMoments_);
    sampler.sumAll(&gvp3_[0],&gvs3_[0],NumMoments_);
    // Compute derivative
    for ( uint i = 0; i < weights_.size(); i++ ) {
      cg   = one;
      ch   = zero;
      diff = value_storage_[i]-ev;
      pf0  = positiveFunction_->evaluate(diff,0);
      pf1  = positiveFunction_->evaluate(diff,1);
      pf2  = positiveFunction_->evaluate(diff,2);
      for ( uint p = 0; p < NumMoments_; p++ ) {
        if ( dev0_[p] > zero ) {
          diff1 = std::pow(pf0,order_[p]-one)*pf1-des1_[p];
          diff2 = std::pow(pf0,order_[p]-two)*pf1*pf1*(gradvec_storage_[i]-egv)-gvs2_[p];
          diff3 = std::pow(pf0,order_[p]-one)*pf2*(gradvec_storage_[i]-egv)-gvs3_[p];
          cg   += coeff_[p]*diff1/dev0_[p];
          ch   += coeff_[p]*(((order_[p]-one)*diff2+diff3)/dev0_[p] -
                    (order_[p]-one)*gvs1_[p]*diff1/devp_[p]);
        }
      }
      dualVector1_->axpy(weights_[i]*ch,*(gradient_storage_[i]));
      dualVector1_->axpy(weights_[i]*cg,*(hessvec_storage_[i]));
    }
    sampler.sumAll(*dualVector1_,*dualVector2_);
    // Fill RiskVector
    (Teuchos::dyn_cast<RiskVector<Real> >(hv)).setVector(*dualVector2_);
  }
};

}

#endif