This file is indexed.

/usr/include/trilinos/ROL_PrimalDualActiveSetStep.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_PRIMALDUALACTIVESETSTEP_H
#define ROL_PRIMALDUALACTIVESETSTEP_H

#include "ROL_Step.hpp"
#include "ROL_Vector.hpp"
#include "ROL_Krylov.hpp"
#include "ROL_Objective.hpp"
#include "ROL_BoundConstraint.hpp"
#include "ROL_Types.hpp"
#include "ROL_Secant.hpp"
#include "Teuchos_ParameterList.hpp"

/** @ingroup step_group
    \class ROL::PrimalDualActiveSetStep
    \brief Implements the computation of optimization steps 
           with the Newton primal-dual active set method.

    To describe primal-dual active set (PDAS), we consider the following 
    abstract setting.  Suppose \f$\mathcal{X}\f$ is a Hilbert space of 
    functions mapping \f$\Xi\f$ to \f$\mathbb{R}\f$.  For example, 
    \f$\Xi\subset\mathbb{R}^n\f$ and \f$\mathcal{X}=L^2(\Xi)\f$ or 
    \f$\Xi = \{1,\ldots,n\}\f$ and \f$\mathcal{X}=\mathbb{R}^n\f$. We 
    assume \f$ f:\mathcal{X}\to\mathbb{R}\f$ is twice-continuously Fréchet 
    differentiable and \f$a,\,b\in\mathcal{X}\f$ with \f$a\le b\f$ almost 
    everywhere in \f$\Xi\f$.  Note that the PDAS algorithm will also work 
    with secant approximations of the Hessian. 

    Traditionally, PDAS is an algorithm for the minimizing quadratic objective 
    functions subject to bound constraints.  ROL implements a Newton PDAS which 
    extends PDAS to general bound-constrained nonlinear programs, i.e., 
    \f[
        \min_x \quad f(x) \quad \text{s.t.} \quad a \le x \le b.
    \f] 
    Given the \f$k\f$-th iterate \f$x_k\f$, the Newton PDAS algorithm computes 
    steps by applying PDAS to the quadratic subproblem 
    \f[
        \min_s \quad \langle \nabla^2 f(x_k)s + \nabla f(x_k),s \rangle_{\mathcal{X}}
        \quad \text{s.t.} \quad a \le x_k + s \le b.
    \f]
    For the \f$k\f$-th quadratic subproblem, PDAS builds an approximation of the 
    active set \f$\mathcal{A}_k\f$ using the dual variable \f$\lambda_k\f$ as 
    \f[
       \mathcal{A}^+_k = \{\,\xi\in\Xi\,:\,(\lambda_k + c(x_k-b))(\xi) > 0\,\}, \quad
       \mathcal{A}^-_k = \{\,\xi\in\Xi\,:\,(\lambda_k + c(x_k-a))(\xi) < 0\,\}, \quad\text{and}\quad
       \mathcal{A}_k = \mathcal{A}^-_k\cup\mathcal{A}^+_k.
    \f] 
    We define the inactive set \f$\mathcal{I}_k=\Xi\setminus\mathcal{A}_k\f$.
    The solution to the quadratic subproblem is then computed iteratively by solving 
    \f[
       \nabla^2 f(x_k) s_k + \lambda_{k+1} = -\nabla f(x_k), \quad
       x_k+s_k = a \;\text{on}\;\mathcal{A}^-_k,\quad x_k+s_k = b\;\text{on}\;\mathcal{A}^+_k,
       \quad\text{and}\quad
       \lambda_{k+1} = 0\;\text{on}\;\mathcal{I}_k
    \f]
    and updating the active and inactive sets. 
 
    One can rewrite this system by consolidating active and inactive parts, i.e., 
    \f[
       \begin{pmatrix}
           \nabla^2 f(x_k)_{\mathcal{A}_k,\mathcal{A}_k}  & \nabla^2 f(x_k)_{\mathcal{A}_k,\mathcal{I}_k} \\
           \nabla^2 f(x_k)_{\mathcal{I}_k,\mathcal{A}_k}  & \nabla^2 f(x_k)_{\mathcal{I}_k,\mathcal{I}_k} 
       \end{pmatrix}
       \begin{pmatrix}
         (s_k)_{\mathcal{A}_k} \\
         (s_k)_{\mathcal{I}_k}
       \end{pmatrix}
       +
       \begin{pmatrix}
         (\lambda_{k+1})_{\mathcal{A}_k} \\
         0
       \end{pmatrix}
       = - 
       \begin{pmatrix}
         \nabla f(x_k)_{\mathcal{A}_k}\\
         \nabla f(x_k)_{\mathcal{I}_k}
       \end{pmatrix}.
    \f]
    Here the subscripts \f$\mathcal{A}_k\f$ and \f$\mathcal{I}_k\f$ denote the active and inactive 
    components, respectively.  Moreover, the active components of \f$s_k\f$ are 
    \f$s_k(\xi) = a(\xi)-x_k(\xi)\f$ if \f$\xi\in\mathcal{A}^-_k\f$ and \f$s_k(\xi) = b(\xi)-x_k(\xi)\f$
    if \f$\xi\in\mathcal{A}^+_k\f$.  Since \f$(s_k)_{\mathcal{A}_k}\f$ is fixed, we only need to solve 
    for the inactive components of \f$s_k\f$ which we can do this using conjugate residuals (CR) (i.e., the 
    Hessian operator corresponding to the inactive indices may not be positive definite).  Once 
    \f$(s_k)_{\mathcal{I}_k}\f$ is computed, it is straight forward to update the dual variables.
*/

namespace ROL {

template <class Real>
class PrimalDualActiveSetStep : public Step<Real> {
private:

  Teuchos::RCP<Krylov<Real> > krylov_;

  // Krylov Parameters
  int iterCR_;  ///< CR iteration counter
  int flagCR_;  ///< CR termination flag
  Real itol_;   ///< Inexact CR tolerance

  // PDAS Parameters
  int maxit_;      ///< Maximum number of PDAS iterations 
  int iter_;       ///< PDAS iteration counter
  int flag_;       ///< PDAS termination flag
  Real stol_;      ///< PDAS minimum step size stopping tolerance
  Real gtol_;      ///< PDAS gradient stopping tolerance
  Real scale_;     ///< Scale for dual variables in the active set, \f$c\f$
  Real neps_;      ///< \f$\epsilon\f$-active set parameter 
  bool feasible_;  ///< Flag whether the current iterate is feasible or not

  // Dual Variable
  Teuchos::RCP<Vector<Real> > lambda_; ///< Container for dual variables
  Teuchos::RCP<Vector<Real> > xlam_;   ///< Container for primal plus dual variables
  Teuchos::RCP<Vector<Real> > x0_;     ///< Container for initial priaml variables
  Teuchos::RCP<Vector<Real> > xbnd_;   ///< Container for primal variable bounds
  Teuchos::RCP<Vector<Real> > As_;     ///< Container for step projected onto active set
  Teuchos::RCP<Vector<Real> > xtmp_;   ///< Container for temporary primal storage
  Teuchos::RCP<Vector<Real> > res_;    ///< Container for optimality system residual for quadratic model
  Teuchos::RCP<Vector<Real> > Ag_;     ///< Container for gradient projected onto active set
  Teuchos::RCP<Vector<Real> > rtmp_;   ///< Container for temporary right hand side storage
  Teuchos::RCP<Vector<Real> > gtmp_;   ///< Container for temporary gradient storage
 
  // Secant Information
  ESecant esec_;                       ///< Enum for secant type
  Teuchos::RCP<Secant<Real> > secant_; ///< Secant object
  bool useSecantPrecond_; 
  bool useSecantHessVec_;

  class HessianPD : public LinearOperator<Real> {
  private:
    const Teuchos::RCP<Objective<Real> > obj_;
    const Teuchos::RCP<BoundConstraint<Real> > bnd_;
    const Teuchos::RCP<Vector<Real> > x_;
    const Teuchos::RCP<Vector<Real> > xlam_;
    Teuchos::RCP<Vector<Real> > v_;
    Real eps_;
    const Teuchos::RCP<Secant<Real> > secant_;
    bool useSecant_;
  public:
    HessianPD(const Teuchos::RCP<Objective<Real> > &obj,
              const Teuchos::RCP<BoundConstraint<Real> > &bnd,
              const Teuchos::RCP<Vector<Real> > &x,
              const Teuchos::RCP<Vector<Real> > &xlam,
              const Real eps = 0,
              const Teuchos::RCP<Secant<Real> > &secant = Teuchos::null,
              const bool useSecant = false )
      : obj_(obj), bnd_(bnd), x_(x), xlam_(xlam),
        eps_(eps), secant_(secant), useSecant_(useSecant) {
      v_ = x_->clone();
      if ( !useSecant || secant == Teuchos::null ) {
        useSecant_ = false;
      }
    }
    void apply( Vector<Real> &Hv, const Vector<Real> &v, Real &tol ) const {
      v_->set(v);
      bnd_->pruneActive(*v_,*xlam_,eps_);
      if ( useSecant_ ) {
        secant_->applyB(Hv,*v_);
      }
      else {
        obj_->hessVec(Hv,*v_,*x_,tol);
      }
      bnd_->pruneActive(Hv,*xlam_,eps_);
    }
  };

  class PrecondPD : public LinearOperator<Real> {
  private:
    const Teuchos::RCP<Objective<Real> > obj_;
    const Teuchos::RCP<BoundConstraint<Real> > bnd_;
    const Teuchos::RCP<Vector<Real> > x_;
    const Teuchos::RCP<Vector<Real> > xlam_;
    Teuchos::RCP<Vector<Real> > v_;
    Real eps_;
    const Teuchos::RCP<Secant<Real> > secant_;
    bool useSecant_;
  public:
    PrecondPD(const Teuchos::RCP<Objective<Real> > &obj,
              const Teuchos::RCP<BoundConstraint<Real> > &bnd,
              const Teuchos::RCP<Vector<Real> > &x,
              const Teuchos::RCP<Vector<Real> > &xlam,
              const Real eps = 0,
              const Teuchos::RCP<Secant<Real> > &secant = Teuchos::null,
              const bool useSecant = false )
      : obj_(obj), bnd_(bnd), x_(x), xlam_(xlam),
        eps_(eps), secant_(secant), useSecant_(useSecant) {
      v_ = x_->dual().clone();
      if ( !useSecant || secant == Teuchos::null ) {
        useSecant_ = false;
      }
    }
    void apply( Vector<Real> &Hv, const Vector<Real> &v, Real &tol ) const {
      Hv.set(v.dual());
    }
    void applyInverse( Vector<Real> &Hv, const Vector<Real> &v, Real &tol ) const {
      v_->set(v);
      bnd_->pruneActive(*v_,*xlam_,eps_);
      if ( useSecant_ ) {
        secant_->applyH(Hv,*v_);
      }
      else {
        obj_->precond(Hv,*v_,*x_,tol);
      }
      bnd_->pruneActive(Hv,*xlam_,eps_);
    }
  };

  /** \brief Compute the gradient-based criticality measure.

             The criticality measure is 
             \f$\|x_k - P_{[a,b]}(x_k-\nabla f(x_k))\|_{\mathcal{X}}\f$.
             Here, \f$P_{[a,b]}\f$ denotes the projection onto the
             bound constraints.
 
             @param[in]    x     is the current iteration
             @param[in]    obj   is the objective function
             @param[in]    con   are the bound constraints
             @param[in]    tol   is a tolerance for inexact evaluations of the objective function
  */ 
  Real computeCriticalityMeasure(Vector<Real> &x, Objective<Real> &obj, BoundConstraint<Real> &con, Real tol) {
    Real one(1);
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
    obj.gradient(*(step_state->gradientVec),x,tol);
    xtmp_->set(x);
    xtmp_->axpy(-one,(step_state->gradientVec)->dual());
    con.project(*xtmp_);
    xtmp_->axpy(-one,x);
    return xtmp_->norm();
  }

public:
  /** \brief Constructor.
     
             @param[in]     parlist   is a parameter list containing relevent algorithmic information
             @param[in]     useSecant is a bool which determines whether or not the algorithm uses 
                                      a secant approximation of the Hessian
  */
  PrimalDualActiveSetStep( Teuchos::ParameterList &parlist ) 
    : Step<Real>::Step(), krylov_(Teuchos::null),
      iterCR_(0), flagCR_(0), itol_(0),
      maxit_(0), iter_(0), flag_(0), stol_(0), gtol_(0), scale_(0),
      neps_(-ROL_EPSILON<Real>()), feasible_(false),
      lambda_(Teuchos::null), xlam_(Teuchos::null), x0_(Teuchos::null),
      xbnd_(Teuchos::null), As_(Teuchos::null), xtmp_(Teuchos::null),
      res_(Teuchos::null), Ag_(Teuchos::null), rtmp_(Teuchos::null),
      gtmp_(Teuchos::null),
      esec_(SECANT_LBFGS), secant_(Teuchos::null), useSecantPrecond_(false),
      useSecantHessVec_(false) {
    Real one(1), oem6(1.e-6), oem8(1.e-8);
    // Algorithmic parameters
    maxit_ = parlist.sublist("Step").sublist("Primal Dual Active Set").get("Iteration Limit",10);
    stol_ = parlist.sublist("Step").sublist("Primal Dual Active Set").get("Relative Step Tolerance",oem8);
    gtol_ = parlist.sublist("Step").sublist("Primal Dual Active Set").get("Relative Gradient Tolerance",oem6);
    scale_ = parlist.sublist("Step").sublist("Primal Dual Active Set").get("Dual Scaling", one);
    // Build secant object
    esec_ = StringToESecant(parlist.sublist("General").sublist("Secant").get("Type","Limited-Memory BFGS"));
    useSecantHessVec_ = parlist.sublist("General").sublist("Secant").get("Use as Hessian", false); 
    useSecantPrecond_ = parlist.sublist("General").sublist("Secant").get("Use as Preconditioner", false);
    if ( useSecantHessVec_ || useSecantPrecond_ ) {
      secant_ = SecantFactory<Real>(parlist);
    }
    // Build Krylov object
    krylov_ = KrylovFactory<Real>(parlist);
  }

  /** \brief Initialize step.  

             This includes projecting the initial guess onto the constraints, 
             computing the initial objective function value and gradient, 
             and initializing the dual variables.

             @param[in,out]    x           is the initial guess 
             @param[in]        obj         is the objective function
             @param[in]        con         are the bound constraints
             @param[in]        algo_state  is the current state of the algorithm
  */
  void initialize( Vector<Real> &x, const Vector<Real> &s, const Vector<Real> &g, 
                   Objective<Real> &obj, BoundConstraint<Real> &con, 
                   AlgorithmState<Real> &algo_state ) {
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
    Real zero(0), one(1);
    // Initialize state descent direction and gradient storage
    step_state->descentVec  = s.clone();
    step_state->gradientVec = g.clone();
    step_state->searchSize  = zero;
    // Initialize additional storage
    xlam_ = x.clone(); 
    x0_   = x.clone();
    xbnd_ = x.clone();
    As_   = s.clone(); 
    xtmp_ = x.clone(); 
    res_  = g.clone();
    Ag_   = g.clone(); 
    rtmp_ = g.clone(); 
    gtmp_ = g.clone(); 
    // Project x onto constraint set
    con.project(x);
    // Update objective function, get value, and get gradient
    Real tol = std::sqrt(ROL_EPSILON<Real>());
    obj.update(x,true,algo_state.iter);
    algo_state.value = obj.value(x,tol);
    algo_state.nfval++;
    algo_state.gnorm = computeCriticalityMeasure(x,obj,con,tol);
    algo_state.ngrad++;
    // Initialize dual variable
    lambda_ = s.clone(); 
    lambda_->set((step_state->gradientVec)->dual());
    lambda_->scale(-one);
    //con.setVectorToLowerBound(*lambda_);
  }

  /** \brief Compute step.

             Given \f$x_k\f$, this function first builds the 
             primal-dual active sets
             \f$\mathcal{A}_k^-\f$ and \f$\mathcal{A}_k^+\f$.  
             Next, it uses CR to compute the inactive 
             components of the step by solving 
             \f[
                 \nabla^2 f(x_k)_{\mathcal{I}_k,\mathcal{I}_k}(s_k)_{\mathcal{I}_k}  = 
                     -\nabla f(x_k)_{\mathcal{I}_k}
                     -\nabla^2 f(x_k)_{\mathcal{I}_k,\mathcal{A}_k} (s_k)_{\mathcal{A}_k}.
             \f]
             Finally, it updates the active components of the 
             dual variables as 
             \f[
                \lambda_{k+1} = -\nabla f(x_k)_{\mathcal{A}_k} 
                                -(\nabla^2 f(x_k) s_k)_{\mathcal{A}_k}.
             \f]

             @param[out]       s           is the step computed via PDAS
             @param[in]        x           is the current iterate
             @param[in]        obj         is the objective function
             @param[in]        con         are the bound constraints
             @param[in]        algo_state  is the current state of the algorithm
  */
  void compute( Vector<Real> &s, const Vector<Real> &x, Objective<Real> &obj, BoundConstraint<Real> &con, 
                AlgorithmState<Real> &algo_state ) {
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
    Real zero(0), one(1);
    s.zero();
    x0_->set(x);
    res_->set(*(step_state->gradientVec));
    for ( iter_ = 0; iter_ < maxit_; iter_++ ) {
      /********************************************************************/
      // MODIFY ITERATE VECTOR TO CHECK ACTIVE SET
      /********************************************************************/
      xlam_->set(*x0_);                          // xlam = x0
      xlam_->axpy(scale_,*(lambda_));            // xlam = x0 + c*lambda
      /********************************************************************/
      // PROJECT x ONTO PRIMAL DUAL FEASIBLE SET
      /********************************************************************/
      As_->zero();                               // As   = 0
   
      con.setVectorToUpperBound(*xbnd_);         // xbnd = u
      xbnd_->axpy(-one,x);                       // xbnd = u - x
      xtmp_->set(*xbnd_);                        // tmp  = u - x
      con.pruneUpperActive(*xtmp_,*xlam_,neps_); // tmp  = I(u - x)
      xbnd_->axpy(-one,*xtmp_);                  // xbnd = A(u - x)
      As_->plus(*xbnd_);                         // As  += A(u - x)

      con.setVectorToLowerBound(*xbnd_);         // xbnd = l
      xbnd_->axpy(-one,x);                       // xbnd = l - x
      xtmp_->set(*xbnd_);                        // tmp  = l - x
      con.pruneLowerActive(*xtmp_,*xlam_,neps_); // tmp  = I(l - x)
      xbnd_->axpy(-one,*xtmp_);                  // xbnd = A(l - x)
      As_->plus(*xbnd_);                         // As  += A(l - x)
      /********************************************************************/
      // APPLY HESSIAN TO ACTIVE COMPONENTS OF s AND REMOVE INACTIVE
      /********************************************************************/
      itol_ = std::sqrt(ROL_EPSILON<Real>());
      if ( useSecantHessVec_ && secant_ != Teuchos::null ) {        // IHAs = H*As
        secant_->applyB(*gtmp_,*As_);
      }
      else {
        obj.hessVec(*gtmp_,*As_,x,itol_);
      }
      con.pruneActive(*gtmp_,*xlam_,neps_);     // IHAs = I(H*As)
      /********************************************************************/
      // SEPARATE ACTIVE AND INACTIVE COMPONENTS OF THE GRADIENT
      /********************************************************************/
      rtmp_->set(*(step_state->gradientVec));    // Inactive components
      con.pruneActive(*rtmp_,*xlam_,neps_);

      Ag_->set(*(step_state->gradientVec));     // Active components
      Ag_->axpy(-one,*rtmp_);
      /********************************************************************/
      // SOLVE REDUCED NEWTON SYSTEM 
      /********************************************************************/
      rtmp_->plus(*gtmp_);
      rtmp_->scale(-one);                        // rhs = -Ig - I(H*As)
      s.zero();
      if ( rtmp_->norm() > zero ) {             
        // Initialize Hessian and preconditioner
        Teuchos::RCP<Objective<Real> > obj_ptr = Teuchos::rcpFromRef(obj);
        Teuchos::RCP<BoundConstraint<Real> > con_ptr = Teuchos::rcpFromRef(con);
        Teuchos::RCP<LinearOperator<Real> > hessian
          = Teuchos::rcp(new HessianPD(obj_ptr,con_ptr,
              algo_state.iterateVec,xlam_,neps_,secant_,useSecantHessVec_));
        Teuchos::RCP<LinearOperator<Real> > precond
          = Teuchos::rcp(new PrecondPD(obj_ptr,con_ptr,
              algo_state.iterateVec,xlam_,neps_,secant_,useSecantPrecond_));
        //solve(s,*rtmp_,*xlam_,x,obj,con);   // Call conjugate residuals
        krylov_->run(s,*hessian,*rtmp_,*precond,iterCR_,flagCR_);
        con.pruneActive(s,*xlam_,neps_);        // s <- Is
      }
      s.plus(*As_);                             // s = Is + As
      /********************************************************************/
      // UPDATE MULTIPLIER 
      /********************************************************************/
      if ( useSecantHessVec_ && secant_ != Teuchos::null ) {
        secant_->applyB(*rtmp_,s);
      }
      else {
        obj.hessVec(*rtmp_,s,x,itol_);
      }
      gtmp_->set(*rtmp_);
      con.pruneActive(*gtmp_,*xlam_,neps_);
      lambda_->set(*rtmp_);
      lambda_->axpy(-one,*gtmp_);
      lambda_->plus(*Ag_);
      lambda_->scale(-one);
      /********************************************************************/
      // UPDATE STEP 
      /********************************************************************/
      x0_->set(x);
      x0_->plus(s);
      res_->set(*(step_state->gradientVec));
      res_->plus(*rtmp_);
      // Compute criticality measure  
      xtmp_->set(*x0_);
      xtmp_->axpy(-one,res_->dual());
      con.project(*xtmp_);
      xtmp_->axpy(-one,*x0_);
//      std::cout << s.norm()               << "  " 
//                << tmp->norm()            << "  " 
//                << res_->norm()           << "  " 
//                << lambda_->norm()  << "  " 
//                << flagCR_          << "  " 
//                << iterCR_          << "\n";
      if ( xtmp_->norm() < gtol_*algo_state.gnorm ) {
        flag_ = 0;
        break;
      }
      if ( s.norm() < stol_*x.norm() ) {
        flag_ = 2;
        break;
      } 
    }
    if ( iter_ == maxit_ ) {
      flag_ = 1;
    }
    else {
      iter_++;
    }
  }

  /** \brief Update step, if successful.

             This function returns \f$x_{k+1} = x_k + s_k\f$.
             It also updates secant information if being used.

             @param[in]        x           is the new iterate
             @param[out]       s           is the step computed via PDAS
             @param[in]        obj         is the objective function
             @param[in]        con         are the bound constraints
             @param[in]        algo_state  is the current state of the algorithm
  */
  void update( Vector<Real> &x, const Vector<Real> &s, Objective<Real> &obj, BoundConstraint<Real> &con,
               AlgorithmState<Real> &algo_state ) {
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();

    x.plus(s);
    feasible_ = con.isFeasible(x);
    algo_state.snorm = s.norm();
    algo_state.iter++;
    Real tol = std::sqrt(ROL_EPSILON<Real>());
    obj.update(x,true,algo_state.iter);
    algo_state.value = obj.value(x,tol);
    algo_state.nfval++;
    
    if ( secant_ != Teuchos::null ) {
      gtmp_->set(*(step_state->gradientVec));
    }
    algo_state.gnorm = computeCriticalityMeasure(x,obj,con,tol);
    algo_state.ngrad++;

    if ( secant_ != Teuchos::null ) {
      secant_->updateStorage(x,*(step_state->gradientVec),*gtmp_,s,algo_state.snorm,algo_state.iter+1);
    }
    (algo_state.iterateVec)->set(x);
  }

  /** \brief Print iterate header.

             This function produces a string containing 
             header information.  
  */
  std::string printHeader( void ) const {
    std::stringstream hist;
    hist << "  ";
    hist << std::setw(6) << std::left << "iter";
    hist << std::setw(15) << std::left << "value";
    hist << std::setw(15) << std::left << "gnorm";
    hist << std::setw(15) << std::left << "snorm";
    hist << std::setw(10) << std::left << "#fval";
    hist << std::setw(10) << std::left << "#grad";
    if ( maxit_ > 1 ) {
      hist << std::setw(10) << std::left << "iterPDAS";
      hist << std::setw(10) << std::left << "flagPDAS";
    }
    else {
      hist << std::setw(10) << std::left << "iterCR";
      hist << std::setw(10) << std::left << "flagCR";
    }
    hist << std::setw(10) << std::left << "feasible";
    hist << "\n";
    return hist.str();
  }

  /** \brief Print step name.

             This function produces a string containing 
             the algorithmic step information.  
  */
  std::string printName( void ) const {
    std::stringstream hist;
    hist << "\nPrimal Dual Active Set Newton's Method\n";
    return hist.str();
  }

  /** \brief Print iterate status.
    
             This function prints the iteration status.

             @param[in]        algo_state  is the current state of the algorithm
             @param[in]        printHeader if set to true will print the header at each iteration
  */
  virtual std::string print( AlgorithmState<Real> &algo_state, bool print_header = false ) const {
    std::stringstream hist;
    hist << std::scientific << std::setprecision(6);
    if ( algo_state.iter == 0 ) {
      hist << printName();
    }
    if ( print_header ) {
      hist << printHeader();
    }
    if ( algo_state.iter == 0 ) {
      hist << "  ";
      hist << std::setw(6) << std::left << algo_state.iter;
      hist << std::setw(15) << std::left << algo_state.value;
      hist << std::setw(15) << std::left << algo_state.gnorm;
      hist << "\n";
    }
    else {
      hist << "  ";
      hist << std::setw(6) << std::left << algo_state.iter;
      hist << std::setw(15) << std::left << algo_state.value;
      hist << std::setw(15) << std::left << algo_state.gnorm;
      hist << std::setw(15) << std::left << algo_state.snorm;
      hist << std::setw(10) << std::left << algo_state.nfval;
      hist << std::setw(10) << std::left << algo_state.ngrad;
      if ( maxit_ > 1 ) {
        hist << std::setw(10) << std::left << iter_;
        hist << std::setw(10) << std::left << flag_;
      }
      else {
        hist << std::setw(10) << std::left << iterCR_;
        hist << std::setw(10) << std::left << flagCR_;
      }
      if ( feasible_ ) {
        hist << std::setw(10) << std::left << "YES";
      }
      else {
        hist << std::setw(10) << std::left << "NO";
      }
      hist << "\n";
    }
    return hist.str();
  }

}; // class PrimalDualActiveSetStep

} // namespace ROL

#endif

//  void solve(Vector<Real> &sol, const Vector<Real> &rhs, const Vector<Real> &xlam, const Vector<Real> &x, 
//             Objective<Real> &obj, BoundConstraint<Real> &con) {
//    Real rnorm  = rhs.norm(); 
//    Real rtol   = std::min(tol1_,tol2_*rnorm);
//    itol_ = std::sqrt(ROL_EPSILON<Real>());
//    sol.zero();
//
//    Teuchos::RCP<Vector<Real> > res = rhs.clone();
//    res->set(rhs);
//
//    Teuchos::RCP<Vector<Real> > v = x.clone();
//    con.pruneActive(*res,xlam,neps_);
//    obj.precond(*v,*res,x,itol_);
//    con.pruneActive(*v,xlam,neps_);
//
//    Teuchos::RCP<Vector<Real> > p = x.clone();
//    p->set(*v);
//
//    Teuchos::RCP<Vector<Real> > Hp = x.clone();
//
//    iterCR_ = 0;
//    flagCR_ = 0;
//
//    Real kappa = 0.0, beta  = 0.0, alpha = 0.0, tmp = 0.0, rv = v->dot(*res);
//
//    for (iterCR_ = 0; iterCR_ < maxitCR_; iterCR_++) {
//      if ( false ) {
//        itol_ = rtol/(maxitCR_*rnorm);
//      }
//      con.pruneActive(*p,xlam,neps_);
//      if ( secant_ == Teuchos::null ) {
//        obj.hessVec(*Hp, *p, x, itol_);
//      }
//      else {
//        secant_->applyB( *Hp, *p, x );
//      }
//      con.pruneActive(*Hp,xlam,neps_);
//
//      kappa = p->dot(*Hp);
//      if ( kappa <= 0.0 ) { flagCR_ = 2; break; }
//      alpha = rv/kappa;
//      sol.axpy(alpha,*p);
//
//      res->axpy(-alpha,*Hp);
//      rnorm = res->norm();
//      if ( rnorm < rtol ) { break; }
//
//      con.pruneActive(*res,xlam,neps_);
//      obj.precond(*v,*res,x,itol_);
//      con.pruneActive(*v,xlam,neps_);
//      tmp  = rv;
//      rv   = v->dot(*res);
//      beta = rv/tmp;
//
//      p->scale(beta);
//      p->axpy(1.0,*v);
//    }
//    if ( iterCR_ == maxitCR_ ) {
//      flagCR_ = 1;
//    }
//    else {
//      iterCR_++;
//    }
//  }


//  /** \brief Apply the inactive components of the Hessian operator.
// 
//             I.e., the components corresponding to \f$\mathcal{I}_k\f$.
//
//             @param[out]       hv     is the result of applying the Hessian at @b x to 
//                                      @b v
//             @param[in]        v      is the direction in which we apply the Hessian
//             @param[in]        x      is the current iteration vector \f$x_k\f$
//             @param[in]        xlam   is the vector \f$x_k + c\lambda_k\f$
//             @param[in]        obj    is the objective function
//             @param[in]        con    are the bound constraints
//  */
//  void applyInactiveHessian(Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &x, 
//                      const Vector<Real> &xlam, Objective<Real> &obj, BoundConstraint<Real> &con) {
//    Teuchos::RCP<Vector<Real> > tmp = v.clone();
//    tmp->set(v);
//    con.pruneActive(*tmp,xlam,neps_);
//    if ( secant_ == Teuchos::null ) {
//      obj.hessVec(hv,*tmp,x,itol_);
//    }
//    else {
//      secant_->applyB(hv,*tmp,x);
//    }
//    con.pruneActive(hv,xlam,neps_);
//  }
//
//  /** \brief Apply the inactive components of the preconditioner operator.
//
//             I.e., the components corresponding to \f$\mathcal{I}_k\f$.
//
//             @param[out]       hv     is the result of applying the preconditioner at @b x to 
//                                      @b v
//             @param[in]        v      is the direction in which we apply the preconditioner
//             @param[in]        x      is the current iteration vector \f$x_k\f$
//             @param[in]        xlam   is the vector \f$x_k + c\lambda_k\f$
//             @param[in]        obj    is the objective function
//             @param[in]        con    are the bound constraints
//  */
//  void applyInactivePrecond(Vector<Real> &pv, const Vector<Real> &v, const Vector<Real> &x,
//                      const Vector<Real> &xlam, Objective<Real> &obj, BoundConstraint<Real> &con) {
//    Teuchos::RCP<Vector<Real> > tmp = v.clone();
//    tmp->set(v);
//    con.pruneActive(*tmp,xlam,neps_);
//    obj.precond(pv,*tmp,x,itol_);
//    con.pruneActive(pv,xlam,neps_);
//  }
//
//  /** \brief Solve the inactive part of the PDAS optimality system.  
//
//             The inactive PDAS optimality system is 
//             \f[
//                 \nabla^2 f(x_k)_{\mathcal{I}_k,\mathcal{I}_k}s  = 
//                     -\nabla f(x_k)_{\mathcal{I}_k}
//                     -\nabla^2 f(x_k)_{\mathcal{I}_k,\mathcal{A}_k} (s_k)_{\mathcal{A}_k}.
//             \f]
//             Since the inactive part of the Hessian may not be positive definite, we solve 
//             using CR.
//   
//             @param[out]       sol    is the vector containing the solution
//             @param[in]        rhs    is the right-hand side vector
//             @param[in]        xlam   is the vector \f$x_k + c\lambda_k\f$
//             @param[in]        x      is the current iteration vector \f$x_k\f$
//             @param[in]        obj    is the objective function
//             @param[in]        con    are the bound constraints
//  */
//  // Solve the inactive part of the optimality system using conjugate residuals
//  void solve(Vector<Real> &sol, const Vector<Real> &rhs, const Vector<Real> &xlam, const Vector<Real> &x, 
//             Objective<Real> &obj, BoundConstraint<Real> &con) {
//    // Initialize Residual
//    Teuchos::RCP<Vector<Real> > res = rhs.clone();
//    res->set(rhs);
//    Real rnorm  = res->norm(); 
//    Real rtol   = std::min(tol1_,tol2_*rnorm);
//    if ( false ) { itol_ = rtol/(maxitCR_*rnorm); }
//    sol.zero();
//
//    // Apply preconditioner to residual r = Mres
//    Teuchos::RCP<Vector<Real> > r = x.clone();
//    applyInactivePrecond(*r,*res,x,xlam,obj,con);
//
//    // Initialize direction p = v
//    Teuchos::RCP<Vector<Real> > p = x.clone();
//    p->set(*r);
//
//    // Apply Hessian to v
//    Teuchos::RCP<Vector<Real> > Hr = x.clone();
//    applyInactiveHessian(*Hr,*r,x,xlam,obj,con);
//
//    // Apply Hessian to p
//    Teuchos::RCP<Vector<Real> > Hp  = x.clone();
//    Teuchos::RCP<Vector<Real> > MHp = x.clone();
//    Hp->set(*Hr);
//
//    iterCR_ = 0;
//    flagCR_ = 0;
//
//    Real kappa = 0.0, beta  = 0.0, alpha = 0.0, tmp = 0.0, rHr = Hr->dot(*r);
//
//    for (iterCR_ = 0; iterCR_ < maxitCR_; iterCR_++) {
//      // Precondition Hp
//      applyInactivePrecond(*MHp,*Hp,x,xlam,obj,con);
//
//      kappa = Hp->dot(*MHp);  // p' H M H p
//      alpha = rHr/kappa;      // r' M H M r
//      sol.axpy(alpha,*p);     // update step
//      res->axpy(-alpha,*Hp);  // residual
//      r->axpy(-alpha,*MHp);   // preconditioned residual
//      
//      // recompute rnorm and decide whether or not to exit
//      rnorm = res->norm();
//      if ( rnorm < rtol ) { break; }
//
//      // Apply Hessian to v
//      itol_ = rtol/(maxitCR_*rnorm);
//      applyInactiveHessian(*Hr,*r,x,xlam,obj,con);
//
//      tmp  = rHr;
//      rHr  = Hr->dot(*r);
//      beta = rHr/tmp;
//      p->scale(beta);
//      p->axpy(1.0,*r);
//      Hp->scale(beta);
//      Hp->axpy(1.0,*Hr);
//    }
//    if ( iterCR_ == maxitCR_ ) {
//      flagCR_ = 1;
//    }
//    else {
//      iterCR_++;
//    }
//  }