This file is indexed.

/usr/include/trilinos/ROL_PrimalDualInteriorPointResidual.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_PRIMALDUALINTERIORPOINTRESIDUAL_H
#define ROL_PRIMALDUALINTERIORPOINTRESIDUAL_H

#include "ROL_BoundConstraint.hpp"
#include "ROL_EqualityConstraint.hpp"
#include "ROL_Objective.hpp"
#include "ROL_PartitionedVector.hpp"
#include "ROL_RandomVector.hpp"

#include <iostream>

/** @ingroup func_group
    \class   ROL::PrimalDualInteriorPointResidual
    \brief   Symmetrized form of the KKT operator for the Type-EB problem
             with equality and bound multipliers

    The system is symmetrized by multiplying through by

    S = [  I        0        0       0      ]
        [  0        I        0       0      ]
        [  0        0    -inv(Zl)    0      ]
        [  0        0        0     -inv(Zu) ] 
    
    Where Zl and Zu are diagonal matrices containing the lower and upper 
    bound multipliers respectively

    Infinite bounds have identically zero-valued lagrange multipliers.
    
    --- 
*/

namespace ROL { 

template<class Real> 
class PrimalDualInteriorPointResidual : public EqualityConstraint<Real> {

  typedef Teuchos::ParameterList     PL;

  typedef Vector<Real>               V;
  typedef PartitionedVector<Real>    PV;
  typedef Objective<Real>            OBJ;
  typedef EqualityConstraint<Real>   CON;
  typedef BoundConstraint<Real>      BND;

  typedef Elementwise::ValueSet<Real>   ValueSet;

  typedef typename PV::size_type size_type;

private: 

  static const size_type OPT   = 0;
  static const size_type EQUAL = 1;
  static const size_type LOWER = 2;
  static const size_type UPPER = 3;

  const Teuchos::RCP<OBJ> obj_;
  const Teuchos::RCP<CON> con_;
  const Teuchos::RCP<BND> bnd_;

  Teuchos::RCP<const V>   x_;            // Optimization vector
  Teuchos::RCP<const V>   l_;            // Equality constraint multiplier
  Teuchos::RCP<const V>   zl_;           // Lower bound multiplier
  Teuchos::RCP<const V>   zu_;           // Upper bound multiplier

  Teuchos::RCP<const V>   xl_;           // Lower bound
  Teuchos::RCP<const V>   xu_;           // Upper bound 

  const Teuchos::RCP<const V> maskL_;   
  const Teuchos::RCP<const V> maskU_;

  Teuchos::RCP<V> scratch_;              // Scratch vector the same dimension as x

  Real mu_;

  bool symmetrize_;

  Real one_;
  Real zero_;
  
  int nfval_;
  int ngrad_;
  int ncval_;

  Elementwise::Multiply<Real>  mult_;

  class SafeDivide : public Elementwise::BinaryFunction<Real> {
  public:
    Real apply( const Real &x, const Real &y ) const {
      return y != 0 ? x/y : 0;
    }
  }; 
  
  SafeDivide div_;

  class SetZeros : public Elementwise::BinaryFunction<Real> {
  public:
    Real apply( const Real &x, const Real &y ) const {
      return y==1.0 ? 0 : x;
    }
  };

  SetZeros setZeros_;  

  // Fill in zeros of x with corresponding values of y
  class InFill : public Elementwise::BinaryFunction<Real> {
  public:
    Real apply( const Real &x, const Real &y ) const {
      return x == 0 ? y : x;
    }
  };
   
  InFill inFill_;
 
  // Extract the optimization and lagrange multiplier
  Teuchos::RCP<V> getOptMult( V &vec ) {
    PV &vec_pv = Teuchos::dyn_cast<PV>(vec);
 
    return CreatePartitioned(vec_pv.get(OPT),vec_pv.get(EQUAL));
  }

  // Extract the optimization and lagrange multiplier
  Teuchos::RCP<const V> getOptMult( const V &vec ) {
    const PV &vec_pv = Teuchos::dyn_cast<const PV>(vec);
 
    return CreatePartitioned(vec_pv.get(OPT),vec_pv.get(EQUAL));
  }




public:

  PrimalDualInteriorPointResidual( const Teuchos::RCP<OBJ> &obj, 
                                   const Teuchos::RCP<CON> &con, 
                                   const Teuchos::RCP<BND> &bnd,
                                   const V &x,
                                   const Teuchos::RCP<const V> &maskL,
                                   const Teuchos::RCP<const V> &maskU,
                                         Teuchos::RCP<V> &scratch,
                                         Real mu, bool symmetrize ) :
    obj_(obj), con_(con), bnd_(bnd), xl_(bnd->getLowerVectorRCP()),
    xu_(bnd->getUpperVectorRCP()), maskL_(maskL), maskU_(maskU), scratch_(scratch),
    mu_(mu), symmetrize_(symmetrize), one_(1.0), zero_(0.0), nfval_(0),
    ngrad_(0), ncval_(0) {

    // Get access to the four components
    const PV &x_pv = Teuchos::dyn_cast<const PV>(x);
    
    x_  = x_pv.get(OPT);
    l_  = x_pv.get(EQUAL);
    zl_ = x_pv.get(LOWER);
    zu_ = x_pv.get(UPPER); 
  
  }
 

  void update( const Vector<Real> &x, bool flag = true, int iter = -1  ) {

    // Get access to the four components
    const PV &x_pv = Teuchos::dyn_cast<const PV>(x);
    
    x_  = x_pv.get(OPT);
    l_  = x_pv.get(EQUAL);
    zl_ = x_pv.get(LOWER);
    zu_ = x_pv.get(UPPER);  

    obj_->update(*x_,flag,iter);
    con_->update(*x_,flag,iter);

  }


  // Evaluate the gradient of the Lagrangian
  void value( V &c, const V &x, Real &tol ) {

    using Teuchos::RCP;

    Elementwise::Shift<Real> subtract_mu(-mu_);
    Elementwise::Fill<Real>  fill_minus_mu(-mu_);

    const PV &x_pv = Teuchos::dyn_cast<const PV>(x);
    PV &c_pv = Teuchos::dyn_cast<PV>(c);
  
    x_  = x_pv.get(OPT);
    l_  = x_pv.get(EQUAL);
    zl_ = x_pv.get(LOWER);
    zu_ = x_pv.get(UPPER);  

    RCP<V> cx  = c_pv.get(OPT);
    RCP<V> cl  = c_pv.get(EQUAL);
    RCP<V> czl = c_pv.get(LOWER);
    RCP<V> czu = c_pv.get(UPPER);  
    
    /********************************************************************************/
    /* Optimization Components                                                      */
    /********************************************************************************/
    obj_->gradient(*cx,*x_,tol);
    ngrad_++;
   
    con_->applyAdjointJacobian(*scratch_,*l_,*x_,tol);

    cx->plus(*scratch_);

    cx->axpy(-one_,*zl_);
    cx->plus(*zu_);            // cx = g+J'l-zl+zu

    /********************************************************************************/
    /* Equality Constraint Components                                               */
    /********************************************************************************/

    con_->value(*cl,*x_,tol);     
    ncval_++;

    /********************************************************************************/
    /* Lower Bound Components                                                       */
    /********************************************************************************/
    if( symmetrize_ ) {  // -(x-l)+mu/zl

      czl->applyUnary(fill_minus_mu);
      czl->applyBinary(div_,*zl_);

      scratch_->set(*x_);
      scratch_->axpy(-1.0,*xl_);
      
      czl->plus(*scratch_);  
      czl->scale(-1.0);
    }
    else {  // czl = zl*(x-l)-mu*e
      czl->set(*x_);                   // czl = x
      czl->axpy(-1.0,*xl_);            // czl = x-l
      czl->applyBinary(mult_,*zl_);    // czl = zl*(x-l)
      czl->applyUnary(subtract_mu);    // czl = zl*(x-l)-mu*e
    }

    // Zero out elements corresponding to infinite lower bounds
    czl->applyBinary(mult_,*maskL_);

    /********************************************************************************/
    /* Upper Bound Components                                                       */
    /********************************************************************************/
    if( symmetrize_ ) { // -(u-x)+mu/zu
     
      czu->applyUnary(fill_minus_mu);
      czu->applyBinary(div_,*zu_);

      scratch_->set(*xu_);
      scratch_->axpy(-1.0, *x_);

      czu->plus(*scratch_);
      czu->scale(-1.0);
    }
    else { // zu*(u-x)-mu*e
      czu->set(*xu_);                  // czu = u
      czu->axpy(-1.0,*x_);             // czu = u-x
      czu->applyBinary(mult_,*zu_);    // czu = zu*(u-x)
      czu->applyUnary(subtract_mu);    // czu = zu*(u-x)-mu*e
    }

    // Zero out elements corresponding to infinite upper bounds
    czu->applyBinary(mult_,*maskU_);

  }

  // Evaluate the action of the Hessian of the Lagrangian on a vector
  //
  // [ J11 J12 J13 J14 ] [ vx  ]   [ jvx  ]   [ J11*vx + J12*vl + J13*vzl + J14*vzu ]
  // [ J21  0   0   0  ] [ vl  ] = [ jvl  ] = [ J21*vx                              ]
  // [ J31  0  J33  0  ] [ vzl ]   [ jvzl ]   [ J31*vx          + J33*vzl           ]
  // [ J41  0   0  J44 ] [ vzu ]   [ jvzu ]   [ J41*vx                    + J44*vzu ]
  //
  void applyJacobian( V &jv, const V &v, const V &x, Real &tol ) {

    using Teuchos::RCP;

    PV &jv_pv = Teuchos::dyn_cast<PV>(jv);
    const PV &v_pv = Teuchos::dyn_cast<const PV>(v);
    const PV &x_pv = Teuchos::dyn_cast<const PV>(x); 

    // output vector components
    RCP<V> jvx  = jv_pv.get(OPT);
    RCP<V> jvl  = jv_pv.get(EQUAL);
    RCP<V> jvzl = jv_pv.get(LOWER);
    RCP<V> jvzu = jv_pv.get(UPPER);

    // input vector components
    RCP<const V> vx  = v_pv.get(OPT);
    RCP<const V> vl  = v_pv.get(EQUAL); 
    RCP<const V> vzl = v_pv.get(LOWER);
    RCP<const V> vzu = v_pv.get(UPPER);

    x_  = x_pv.get(OPT);
    l_  = x_pv.get(EQUAL);
    zl_ = x_pv.get(LOWER);
    zu_ = x_pv.get(UPPER);  


    /********************************************************************************/
    /* Optimization Components                                                      */
    /********************************************************************************/

    obj_->hessVec(*jvx,*vx,*x_,tol);
    con_->applyAdjointHessian(*scratch_,*l_,*vx,*x_,tol);
    jvx->plus(*scratch_); 
    con_->applyAdjointJacobian(*scratch_,*vl,*x_,tol);
    jvx->plus(*scratch_);

    // H_13 = -I for l_i > -infty
    scratch_->set(*vzl);
    scratch_->applyBinary(mult_,*maskL_);
    jvx->axpy(-1.0,*scratch_);
    
    // H_14 = I for u_i < infty
    scratch_->set(*vzu);
    scratch_->applyBinary(mult_,*maskU_);
    jvx->plus(*scratch_);

    /********************************************************************************/
    /* Equality Constraint Components                                               */
    /********************************************************************************/

    con_->applyJacobian(*jvl,*vx,*x_,tol);

    /********************************************************************************/
    /* Lower Bound Components                                                       */
    /********************************************************************************/

    if( symmetrize_ ) {
      // czl  = x-l-mu/zl
      // jvzl = -vx - inv(Zl)*(X-L)*vzl
      
      jvzl->set(*x_);
      jvzl->axpy(-1.0,*xl_);
      jvzl->applyBinary(mult_,*vzl);
      jvzl->applyBinary(div_,*zl_);
          
      jvzl->plus(*vx);
      jvzl->scale(-1.0);
      
    }

    else {
      // czl  = zl*(x-l)-mu*e 
      // jvzl = Zl*vx + (X-L)*vzl 

      // H_31 = Zl
      jvzl->set(*vx);
      jvzl->applyBinary(mult_,*zl_);

      // H_33 = X-L
      scratch_->set(*x_);
      scratch_->axpy(-1.0,*xl_);
      scratch_->applyBinary(mult_,*vzl);

      jvzl->plus(*scratch_);

    }

    // jvzl[i] = vzl[i] if l[i] = -inf
    jvzl->applyBinary(mult_,*maskL_);
    jvzl->applyBinary(inFill_,*vzl);

    /********************************************************************************/
    /* Upper Bound Components                                                       */
    /********************************************************************************/
  
    if( symmetrize_ ) {
      // czu  = u-x-mu/zu
      // jvzu = vx - inv(Zu)*(U-X)*vzu
     
      jvzu->set(*xu_);
      jvzu->axpy(-1.0,*x_);
      jvzu->applyBinary(mult_,*vzu);
      jvzu->applyBinary(div_,*zu_);
      jvzu->scale(-1.0); 
      jvzu->plus(*vx);

    }
    else {
      // czu = zu*(u-x)-mu*e
      // jvzu = -Zu*vx + (U-X)*vzu 
   
      // H_41 = -Zu
      scratch_->set(*zu_);
      scratch_->applyBinary(mult_,*vx);

      // H_44 = U-X
      jvzu->set(*xu_);
      jvzu->axpy(-1.0,*x_);
      jvzu->applyBinary(mult_,*vzu);
 
      jvzu->axpy(-1.0,*scratch_);   
  
    }

    // jvzu[i] = vzu[i] if u[i] = inf 
    jvzu->applyBinary(mult_,*maskU_);        
    jvzu->applyBinary(inFill_,*vzu);         

  }

  // Call this whenever mu changes
  void reset( const Real mu ) {
    mu_ = mu;
    nfval_ = 0;
    ngrad_ = 0;
    ncval_ = 0;
  }
  
  int getNumberFunctionEvaluations(void) const {
    return nfval_;
  }

  int getNumberGradientEvaluations(void) const {
    return ngrad_;
  }

  int getNumberConstraintEvaluations(void) const {
    return ncval_;
  }

}; // class PrimalDualInteriorPointResidual

} // namespace ROL

#endif // ROL_PRIMALDUALINTERIORPOINTRESIDUAL_H