/usr/include/trilinos/ROL_PrimalDualInteriorPointResidual.hpp is in libtrilinos-rol-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_PRIMALDUALINTERIORPOINTRESIDUAL_H
#define ROL_PRIMALDUALINTERIORPOINTRESIDUAL_H
#include "ROL_BoundConstraint.hpp"
#include "ROL_EqualityConstraint.hpp"
#include "ROL_Objective.hpp"
#include "ROL_PartitionedVector.hpp"
#include "ROL_RandomVector.hpp"
#include <iostream>
/** @ingroup func_group
\class ROL::PrimalDualInteriorPointResidual
\brief Symmetrized form of the KKT operator for the Type-EB problem
with equality and bound multipliers
The system is symmetrized by multiplying through by
S = [ I 0 0 0 ]
[ 0 I 0 0 ]
[ 0 0 -inv(Zl) 0 ]
[ 0 0 0 -inv(Zu) ]
Where Zl and Zu are diagonal matrices containing the lower and upper
bound multipliers respectively
Infinite bounds have identically zero-valued lagrange multipliers.
---
*/
namespace ROL {
template<class Real>
class PrimalDualInteriorPointResidual : public EqualityConstraint<Real> {
typedef Teuchos::ParameterList PL;
typedef Vector<Real> V;
typedef PartitionedVector<Real> PV;
typedef Objective<Real> OBJ;
typedef EqualityConstraint<Real> CON;
typedef BoundConstraint<Real> BND;
typedef Elementwise::ValueSet<Real> ValueSet;
typedef typename PV::size_type size_type;
private:
static const size_type OPT = 0;
static const size_type EQUAL = 1;
static const size_type LOWER = 2;
static const size_type UPPER = 3;
const Teuchos::RCP<OBJ> obj_;
const Teuchos::RCP<CON> con_;
const Teuchos::RCP<BND> bnd_;
Teuchos::RCP<const V> x_; // Optimization vector
Teuchos::RCP<const V> l_; // Equality constraint multiplier
Teuchos::RCP<const V> zl_; // Lower bound multiplier
Teuchos::RCP<const V> zu_; // Upper bound multiplier
Teuchos::RCP<const V> xl_; // Lower bound
Teuchos::RCP<const V> xu_; // Upper bound
const Teuchos::RCP<const V> maskL_;
const Teuchos::RCP<const V> maskU_;
Teuchos::RCP<V> scratch_; // Scratch vector the same dimension as x
Real mu_;
bool symmetrize_;
Real one_;
Real zero_;
int nfval_;
int ngrad_;
int ncval_;
Elementwise::Multiply<Real> mult_;
class SafeDivide : public Elementwise::BinaryFunction<Real> {
public:
Real apply( const Real &x, const Real &y ) const {
return y != 0 ? x/y : 0;
}
};
SafeDivide div_;
class SetZeros : public Elementwise::BinaryFunction<Real> {
public:
Real apply( const Real &x, const Real &y ) const {
return y==1.0 ? 0 : x;
}
};
SetZeros setZeros_;
// Fill in zeros of x with corresponding values of y
class InFill : public Elementwise::BinaryFunction<Real> {
public:
Real apply( const Real &x, const Real &y ) const {
return x == 0 ? y : x;
}
};
InFill inFill_;
// Extract the optimization and lagrange multiplier
Teuchos::RCP<V> getOptMult( V &vec ) {
PV &vec_pv = Teuchos::dyn_cast<PV>(vec);
return CreatePartitioned(vec_pv.get(OPT),vec_pv.get(EQUAL));
}
// Extract the optimization and lagrange multiplier
Teuchos::RCP<const V> getOptMult( const V &vec ) {
const PV &vec_pv = Teuchos::dyn_cast<const PV>(vec);
return CreatePartitioned(vec_pv.get(OPT),vec_pv.get(EQUAL));
}
public:
PrimalDualInteriorPointResidual( const Teuchos::RCP<OBJ> &obj,
const Teuchos::RCP<CON> &con,
const Teuchos::RCP<BND> &bnd,
const V &x,
const Teuchos::RCP<const V> &maskL,
const Teuchos::RCP<const V> &maskU,
Teuchos::RCP<V> &scratch,
Real mu, bool symmetrize ) :
obj_(obj), con_(con), bnd_(bnd), xl_(bnd->getLowerVectorRCP()),
xu_(bnd->getUpperVectorRCP()), maskL_(maskL), maskU_(maskU), scratch_(scratch),
mu_(mu), symmetrize_(symmetrize), one_(1.0), zero_(0.0), nfval_(0),
ngrad_(0), ncval_(0) {
// Get access to the four components
const PV &x_pv = Teuchos::dyn_cast<const PV>(x);
x_ = x_pv.get(OPT);
l_ = x_pv.get(EQUAL);
zl_ = x_pv.get(LOWER);
zu_ = x_pv.get(UPPER);
}
void update( const Vector<Real> &x, bool flag = true, int iter = -1 ) {
// Get access to the four components
const PV &x_pv = Teuchos::dyn_cast<const PV>(x);
x_ = x_pv.get(OPT);
l_ = x_pv.get(EQUAL);
zl_ = x_pv.get(LOWER);
zu_ = x_pv.get(UPPER);
obj_->update(*x_,flag,iter);
con_->update(*x_,flag,iter);
}
// Evaluate the gradient of the Lagrangian
void value( V &c, const V &x, Real &tol ) {
using Teuchos::RCP;
Elementwise::Shift<Real> subtract_mu(-mu_);
Elementwise::Fill<Real> fill_minus_mu(-mu_);
const PV &x_pv = Teuchos::dyn_cast<const PV>(x);
PV &c_pv = Teuchos::dyn_cast<PV>(c);
x_ = x_pv.get(OPT);
l_ = x_pv.get(EQUAL);
zl_ = x_pv.get(LOWER);
zu_ = x_pv.get(UPPER);
RCP<V> cx = c_pv.get(OPT);
RCP<V> cl = c_pv.get(EQUAL);
RCP<V> czl = c_pv.get(LOWER);
RCP<V> czu = c_pv.get(UPPER);
/********************************************************************************/
/* Optimization Components */
/********************************************************************************/
obj_->gradient(*cx,*x_,tol);
ngrad_++;
con_->applyAdjointJacobian(*scratch_,*l_,*x_,tol);
cx->plus(*scratch_);
cx->axpy(-one_,*zl_);
cx->plus(*zu_); // cx = g+J'l-zl+zu
/********************************************************************************/
/* Equality Constraint Components */
/********************************************************************************/
con_->value(*cl,*x_,tol);
ncval_++;
/********************************************************************************/
/* Lower Bound Components */
/********************************************************************************/
if( symmetrize_ ) { // -(x-l)+mu/zl
czl->applyUnary(fill_minus_mu);
czl->applyBinary(div_,*zl_);
scratch_->set(*x_);
scratch_->axpy(-1.0,*xl_);
czl->plus(*scratch_);
czl->scale(-1.0);
}
else { // czl = zl*(x-l)-mu*e
czl->set(*x_); // czl = x
czl->axpy(-1.0,*xl_); // czl = x-l
czl->applyBinary(mult_,*zl_); // czl = zl*(x-l)
czl->applyUnary(subtract_mu); // czl = zl*(x-l)-mu*e
}
// Zero out elements corresponding to infinite lower bounds
czl->applyBinary(mult_,*maskL_);
/********************************************************************************/
/* Upper Bound Components */
/********************************************************************************/
if( symmetrize_ ) { // -(u-x)+mu/zu
czu->applyUnary(fill_minus_mu);
czu->applyBinary(div_,*zu_);
scratch_->set(*xu_);
scratch_->axpy(-1.0, *x_);
czu->plus(*scratch_);
czu->scale(-1.0);
}
else { // zu*(u-x)-mu*e
czu->set(*xu_); // czu = u
czu->axpy(-1.0,*x_); // czu = u-x
czu->applyBinary(mult_,*zu_); // czu = zu*(u-x)
czu->applyUnary(subtract_mu); // czu = zu*(u-x)-mu*e
}
// Zero out elements corresponding to infinite upper bounds
czu->applyBinary(mult_,*maskU_);
}
// Evaluate the action of the Hessian of the Lagrangian on a vector
//
// [ J11 J12 J13 J14 ] [ vx ] [ jvx ] [ J11*vx + J12*vl + J13*vzl + J14*vzu ]
// [ J21 0 0 0 ] [ vl ] = [ jvl ] = [ J21*vx ]
// [ J31 0 J33 0 ] [ vzl ] [ jvzl ] [ J31*vx + J33*vzl ]
// [ J41 0 0 J44 ] [ vzu ] [ jvzu ] [ J41*vx + J44*vzu ]
//
void applyJacobian( V &jv, const V &v, const V &x, Real &tol ) {
using Teuchos::RCP;
PV &jv_pv = Teuchos::dyn_cast<PV>(jv);
const PV &v_pv = Teuchos::dyn_cast<const PV>(v);
const PV &x_pv = Teuchos::dyn_cast<const PV>(x);
// output vector components
RCP<V> jvx = jv_pv.get(OPT);
RCP<V> jvl = jv_pv.get(EQUAL);
RCP<V> jvzl = jv_pv.get(LOWER);
RCP<V> jvzu = jv_pv.get(UPPER);
// input vector components
RCP<const V> vx = v_pv.get(OPT);
RCP<const V> vl = v_pv.get(EQUAL);
RCP<const V> vzl = v_pv.get(LOWER);
RCP<const V> vzu = v_pv.get(UPPER);
x_ = x_pv.get(OPT);
l_ = x_pv.get(EQUAL);
zl_ = x_pv.get(LOWER);
zu_ = x_pv.get(UPPER);
/********************************************************************************/
/* Optimization Components */
/********************************************************************************/
obj_->hessVec(*jvx,*vx,*x_,tol);
con_->applyAdjointHessian(*scratch_,*l_,*vx,*x_,tol);
jvx->plus(*scratch_);
con_->applyAdjointJacobian(*scratch_,*vl,*x_,tol);
jvx->plus(*scratch_);
// H_13 = -I for l_i > -infty
scratch_->set(*vzl);
scratch_->applyBinary(mult_,*maskL_);
jvx->axpy(-1.0,*scratch_);
// H_14 = I for u_i < infty
scratch_->set(*vzu);
scratch_->applyBinary(mult_,*maskU_);
jvx->plus(*scratch_);
/********************************************************************************/
/* Equality Constraint Components */
/********************************************************************************/
con_->applyJacobian(*jvl,*vx,*x_,tol);
/********************************************************************************/
/* Lower Bound Components */
/********************************************************************************/
if( symmetrize_ ) {
// czl = x-l-mu/zl
// jvzl = -vx - inv(Zl)*(X-L)*vzl
jvzl->set(*x_);
jvzl->axpy(-1.0,*xl_);
jvzl->applyBinary(mult_,*vzl);
jvzl->applyBinary(div_,*zl_);
jvzl->plus(*vx);
jvzl->scale(-1.0);
}
else {
// czl = zl*(x-l)-mu*e
// jvzl = Zl*vx + (X-L)*vzl
// H_31 = Zl
jvzl->set(*vx);
jvzl->applyBinary(mult_,*zl_);
// H_33 = X-L
scratch_->set(*x_);
scratch_->axpy(-1.0,*xl_);
scratch_->applyBinary(mult_,*vzl);
jvzl->plus(*scratch_);
}
// jvzl[i] = vzl[i] if l[i] = -inf
jvzl->applyBinary(mult_,*maskL_);
jvzl->applyBinary(inFill_,*vzl);
/********************************************************************************/
/* Upper Bound Components */
/********************************************************************************/
if( symmetrize_ ) {
// czu = u-x-mu/zu
// jvzu = vx - inv(Zu)*(U-X)*vzu
jvzu->set(*xu_);
jvzu->axpy(-1.0,*x_);
jvzu->applyBinary(mult_,*vzu);
jvzu->applyBinary(div_,*zu_);
jvzu->scale(-1.0);
jvzu->plus(*vx);
}
else {
// czu = zu*(u-x)-mu*e
// jvzu = -Zu*vx + (U-X)*vzu
// H_41 = -Zu
scratch_->set(*zu_);
scratch_->applyBinary(mult_,*vx);
// H_44 = U-X
jvzu->set(*xu_);
jvzu->axpy(-1.0,*x_);
jvzu->applyBinary(mult_,*vzu);
jvzu->axpy(-1.0,*scratch_);
}
// jvzu[i] = vzu[i] if u[i] = inf
jvzu->applyBinary(mult_,*maskU_);
jvzu->applyBinary(inFill_,*vzu);
}
// Call this whenever mu changes
void reset( const Real mu ) {
mu_ = mu;
nfval_ = 0;
ngrad_ = 0;
ncval_ = 0;
}
int getNumberFunctionEvaluations(void) const {
return nfval_;
}
int getNumberGradientEvaluations(void) const {
return ngrad_;
}
int getNumberConstraintEvaluations(void) const {
return ncval_;
}
}; // class PrimalDualInteriorPointResidual
} // namespace ROL
#endif // ROL_PRIMALDUALINTERIORPOINTRESIDUAL_H
|