/usr/include/trilinos/ROL_PrimalDualSystemStep.hpp is in libtrilinos-rol-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_PRIMALDUALSYSTEMSTEP_H
#define ROL_PRIMALDUALSYSTEMSTEP_H
#include "ROL_NewtonKrylovStep.hpp"
#include "ROL_PrimalDualInteriorPointOperator.hpp"
#include "ROL_SchurComplememt.hpp"
/** @ingroup step_group
\class ROL::PrimalDualSystemStep
\brief Provides the interface to compute approximate
solutions to 2x2 block systems arising from primal-dual
interior point methods
Note that as we do not need an additional Lagrange multiplier
for the primal dual system, the vector expected to be passed
in its place is the primal-dual residual
*/
namespace ROL {
template<class Real>
class PrimalDualSystemStep : public Step<Real> {
typedef Vector<Real> V;
typedef PartitionedVector<Real> PV;
typedef Objective<Real> OBJ;
typedef BoundConstraint<Real> BND;
typedef EqualityConstraint<Real> CON;
typedef AlgorithmState<Real> AS;
typedef SchurComplement<Real> SCHUR;
typedef PrimalDualInteriorPointBlock11 OP11;
typedef PrimalDualInteriorPointBlock12 OP12;
typedef PrimalDualInteriorPointBlock21 OP21;
typedef PrimalDualInteriorPointBlock22 OP22;
private:
// Block indices
static const size_type OPT = 0;
static const size_type EQUAL = 1;
static const size_type LOWER = 2;
static const size_type UPPER = 3;
// Super block indices
static const size_type OPTMULT = 0; // Optimization and equality multiplier components
static const size_type BNDMULT = 1; // Bound multiplier components
Teuchos::RCP<Secant<Real> > secant_;
Teuchos::RCP<Krylov<Real> > krylov_;
Teuchos::RCP<V> scratch1_; // scratch vector
Teuchos::RCP<V> scratch_;
Teuchos::RCP<OP11> A_;
Teuchos::RCP<OP12> B_;
Teuchos::RCP<OP21> C_;
Teuchos::RCP<OP22> D_;
Teuchos::RCP<SCHUR> schur_; // Allows partial decoupling of (x,lambda) and (zl,zu)
Teuchos::RCP<OP> op_; // Solve fully coupled system
int iterKrylov_; ///< Number of Krylov iterations (used for inexact Newton)
int flagKrylov_; ///< Termination flag for Krylov method (used for inexact Newton)
int verbosity_; ///< Verbosity level
bool useSecantPrecond_;
bool useSchurComplement_;
// Repartition (x,lambda,zl,zu) as (xlambda,z) = ((x,lambda),(zl,zu))
Teuchos::RCP<PV> repartition( V &x ) {
using Teuchos::RCP; using Teuchos::rcp;
PV &x_pv = Teuchos::dyn_cast<PV>(x);
RCP<V> xlambda = CreatePartitionedVector(x_pv.get(OPT),x_pv.get(EQUAL));
RCP<V> z = CreatePartitionedVector(x_pv.get(LOWER),x_pv.get(UPPER));
RCP<V> temp[] = {xlambda,z};
return rcp( new PV( std::vector<RCP<V> >(temp,temp+2) ) );
}
// Repartition (x,lambda,zl,zu) as (xlambda,z) = ((x,lambda),(zl,zu))
Teuchos::RCP<const PV> repartition( const V &x ) {
const PV &x_pv = Teuchos::dyn_cast<const PV>(x);
RCP<const V> xlambda = CreatePartitionedVector(x_pv.get(OPT),x_pv.get(EQUAL));
RCP<const V> z = CreatePartitionedVector(x_pv.get(LOWER),x_pv.get(UPPER));
RCP<const V> temp[] = {xlambda,z};
return rcp( new PV( std::vector<RCP<const V> >(temp,temp+2) ) );
}
public:
using Step<Real>::initialize;
using Step<Real>::compute;
using Step<Real>::update;
PrimalDualSystemStep( Teuchos::ParameterList &parlist,
const Teuchos::RCP<Krylov<Real> > &krylov,
const Teuchos::RCP<Secant<Real> > &secant,
Teuchos::RCP<V> &scratch1 ) : Step<Real>(),
krylov_(krylov), secant_(secant), scratch1_(scratch1), schur_(Teuchos::null),
op_(Teuchos::null), useSchurComplement_(false) {
PL &iplist = parlist.sublist("Step").sublist("Primal Dual Interior Point");
PL &syslist = iplist.sublist("System Solver");
useSchurComplement_ = syslist.get("Use Schur Complement",false);
}
PrimalDualSystemStep( Teuchos::ParameterList &parlist,
Teuchos::RCP<V> &scratch1_ ) : Step<Real>() {
PrimalDualSystemStep(parlist,Teuchos::null,Teuchos::null,scratch1);
}
void initialize( V &x, const V &g, V &res, const V &c,
OBJ &obj, CON &con, BND &bnd, AS &algo_state ) {
Step<Real>::initialize(x,g,res,c,obj,con,bnd,algo_state);
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcpFromRef;
RCP<OBJ> pObj = rcpFromRef(obj);
RCP<CON> pCon = rcpFromRef(con);
RCP<BND> pBnd = rcpFromRef(bnd);
RCP<PV> x_pv = repartition(x);
RCP<V> xlambda = x_pv->get(OPTMULT);
RCP<V> z = x_pv->get(BNDMULT);
A_ = rcp( new OP11( pObj, pCon, *xlambda, scratch1_ ) );
B_ = rcp( new OP12( ) );
C_ = rcp( new OP21( *z ) );
D_ = rcp( new OP22( pBnd, *xlambda ) );
if( useSchurComplement_ ) {
schur_ = rcp( new SCHUR(A_,B_,C_,D_,scratch1_) );
}
else {
op_ = BlockOperator2<Real>(A_,B_,C_,D_);
}
}
void compute( V &s, const V &x, const V &res, OBJ &obj, CON &con,
BND &bnd, AS &algo_state ) {
Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
if( useSchurComplement_ ) {
RCP<const PV> x_pv = repartition(x);
RCP<const PV> res_pv = repartition(res);
RCP<PV> s_pv = repartition(s);
// Decouple (x,lambda) from (zl,zu) so that s <- L
RCP<V> sxl = s_pv->get(OPTMULT);
RCP<V> sz = s_pv->get(BNDMULT);
}
else {
}
}
void update( V &x, V &res, const V &s, OBJ &obj, CON &con,
BND &bnd, AS &algo_state ) {
Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
}
};
} // namespace ROL
#endif // ROL_PRIMALDUALSYSTEMSTEP_H
|