/usr/include/trilinos/ROL_ProjectedNewtonKrylovStep.hpp is in libtrilinos-rol-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_PROJECTEDNEWTONKRYLOVSTEP_H
#define ROL_PROJECTEDNEWTONKRYLOVSTEP_H
#include "ROL_Types.hpp"
#include "ROL_Step.hpp"
#include "ROL_Secant.hpp"
#include "ROL_Krylov.hpp"
#include "ROL_LinearOperator.hpp"
#include <sstream>
#include <iomanip>
/** @ingroup step_group
\class ROL::ProjectedNewtonKrylovStep
\brief Provides the interface to compute optimization steps
with projected inexact ProjectedNewton's method using line search.
*/
namespace ROL {
template <class Real>
class ProjectedNewtonKrylovStep : public Step<Real> {
private:
Teuchos::RCP<Secant<Real> > secant_; ///< Secant object (used for quasi-Newton)
Teuchos::RCP<Krylov<Real> > krylov_; ///< Krylov solver object (used for inexact Newton)
EKrylov ekv_;
ESecant esec_;
Teuchos::RCP<Vector<Real> > gp_;
Teuchos::RCP<Vector<Real> > d_;
int iterKrylov_; ///< Number of Krylov iterations (used for inexact Newton)
int flagKrylov_; ///< Termination flag for Krylov method (used for inexact Newton)
int verbosity_; ///< Verbosity level
const bool computeObj_;
bool useSecantPrecond_; ///< Whether or not a secant approximation is used for preconditioning inexact Newton
bool useProjectedGrad_; ///< Whether or not to use to the projected gradient criticality measure
std::string krylovName_;
std::string secantName_;
class HessianPNK : public LinearOperator<Real> {
private:
const Teuchos::RCP<Objective<Real> > obj_;
const Teuchos::RCP<BoundConstraint<Real> > bnd_;
const Teuchos::RCP<Vector<Real> > x_;
const Teuchos::RCP<Vector<Real> > g_;
Teuchos::RCP<Vector<Real> > v_;
Real eps_;
public:
HessianPNK(const Teuchos::RCP<Objective<Real> > &obj,
const Teuchos::RCP<BoundConstraint<Real> > &bnd,
const Teuchos::RCP<Vector<Real> > &x,
const Teuchos::RCP<Vector<Real> > &g,
Real eps = 0 )
: obj_(obj), bnd_(bnd), x_(x), g_(g), eps_(eps) {
v_ = x_->clone();
}
void apply(Vector<Real> &Hv, const Vector<Real> &v, Real &tol) const {
v_->set(v);
bnd_->pruneActive(*v_,*g_,*x_,eps_);
obj_->hessVec(Hv,*v_,*x_,tol);
bnd_->pruneActive(Hv,*g_,*x_,eps_);
v_->set(v);
bnd_->pruneInactive(*v_,*g_,*x_,eps_);
Hv.plus(v_->dual());
}
};
class PrecondPNK : public LinearOperator<Real> {
private:
const Teuchos::RCP<Objective<Real> > obj_;
const Teuchos::RCP<Secant<Real> > secant_;
const Teuchos::RCP<BoundConstraint<Real> > bnd_;
const Teuchos::RCP<Vector<Real> > x_;
const Teuchos::RCP<Vector<Real> > g_;
Teuchos::RCP<Vector<Real> > v_;
Real eps_;
const bool useSecant_;
public:
PrecondPNK(const Teuchos::RCP<Objective<Real> > &obj,
const Teuchos::RCP<BoundConstraint<Real> > &bnd,
const Teuchos::RCP<Vector<Real> > &x,
const Teuchos::RCP<Vector<Real> > &g,
Real eps = 0 )
: obj_(obj), bnd_(bnd), x_(x), g_(g), eps_(eps), useSecant_(false) {
v_ = x_->clone();
}
PrecondPNK(const Teuchos::RCP<Secant<Real> > &secant,
const Teuchos::RCP<BoundConstraint<Real> > &bnd,
const Teuchos::RCP<Vector<Real> > &x,
const Teuchos::RCP<Vector<Real> > &g,
Real eps = 0 )
: secant_(secant), bnd_(bnd), x_(x), g_(g), eps_(eps), useSecant_(true) {
v_ = x_->clone();
}
void apply(Vector<Real> &Hv, const Vector<Real> &v, Real &tol) const {
Hv.set(v.dual());
}
void applyInverse(Vector<Real> &Hv, const Vector<Real> &v, Real &tol) const {
v_->set(v);
bnd_->pruneActive(*v_,*g_,*x_,eps_);
if ( useSecant_ ) {
secant_->applyH(Hv,*v_);
}
else {
obj_->precond(Hv,*v_,*x_,tol);
}
bnd_->pruneActive(Hv,*g_,*x_,eps_);
v_->set(v);
bnd_->pruneInactive(*v_,*g_,*x_,eps_);
Hv.plus(v_->dual());
}
};
public:
using Step<Real>::initialize;
using Step<Real>::compute;
using Step<Real>::update;
/** \brief Constructor.
Standard constructor to build a ProjectedNewtonKrylovStep object. Algorithmic
specifications are passed in through a Teuchos::ParameterList.
@param[in] parlist is a parameter list containing algorithmic specifications
*/
ProjectedNewtonKrylovStep( Teuchos::ParameterList &parlist, const bool computeObj = true )
: Step<Real>(), secant_(Teuchos::null), krylov_(Teuchos::null),
gp_(Teuchos::null), d_(Teuchos::null),
iterKrylov_(0), flagKrylov_(0), verbosity_(0),
computeObj_(computeObj), useSecantPrecond_(false) {
// Parse ParameterList
Teuchos::ParameterList& Glist = parlist.sublist("General");
useSecantPrecond_ = Glist.sublist("Secant").get("Use as Preconditioner", false);
useProjectedGrad_ = Glist.get("Projected Gradient Criticality Measure", false);
verbosity_ = Glist.get("Print Verbosity",0);
// Initialize Krylov object
krylovName_ = Glist.sublist("Krylov").get("Type","Conjugate Gradients");
ekv_ = StringToEKrylov(krylovName_);
krylov_ = KrylovFactory<Real>(parlist);
// Initialize secant object
secantName_ = Glist.sublist("Secant").get("Type","Limited-Memory BFGS");
esec_ = StringToESecant(secantName_);
if ( useSecantPrecond_ ) {
secant_ = SecantFactory<Real>(parlist);
}
}
/** \brief Constructor.
Constructor to build a ProjectedNewtonKrylovStep object with user-defined
secant and Krylov objects. Algorithmic specifications are passed in through
a Teuchos::ParameterList.
@param[in] parlist is a parameter list containing algorithmic specifications
@param[in] krylov is a user-defined Krylov object
@param[in] secant is a user-defined secant object
*/
ProjectedNewtonKrylovStep(Teuchos::ParameterList &parlist,
const Teuchos::RCP<Krylov<Real> > &krylov,
const Teuchos::RCP<Secant<Real> > &secant,
const bool computeObj = true)
: Step<Real>(), secant_(secant), krylov_(krylov),
ekv_(KRYLOV_USERDEFINED), esec_(SECANT_USERDEFINED),
gp_(Teuchos::null), d_(Teuchos::null),
iterKrylov_(0), flagKrylov_(0), verbosity_(0),
computeObj_(computeObj), useSecantPrecond_(false) {
// Parse ParameterList
Teuchos::ParameterList& Glist = parlist.sublist("General");
useSecantPrecond_ = Glist.sublist("Secant").get("Use as Preconditioner", false);
useProjectedGrad_ = Glist.get("Projected Gradient Criticality Measure", false);
verbosity_ = Glist.get("Print Verbosity",0);
// Initialize secant object
if ( useSecantPrecond_ ) {
if (secant_ == Teuchos::null ) {
secantName_ = Glist.sublist("Secant").get("Type","Limited-Memory BFGS");
esec_ = StringToESecant(secantName_);
secant_ = SecantFactory<Real>(parlist);
}
else {
secantName_ = Glist.sublist("Secant").get("User Defined Secant Name",
"Unspecified User Defined Secant Method");
}
}
// Initialize Krylov object
if ( krylov_ == Teuchos::null ) {
krylovName_ = Glist.sublist("Krylov").get("Type","Conjugate Gradients");
ekv_ = StringToEKrylov(krylovName_);
krylov_ = KrylovFactory<Real>(parlist);
}
}
void initialize( Vector<Real> &x, const Vector<Real> &s, const Vector<Real> &g,
Objective<Real> &obj, BoundConstraint<Real> &bnd,
AlgorithmState<Real> &algo_state ) {
Step<Real>::initialize(x,s,g,obj,bnd,algo_state);
gp_ = g.clone();
d_ = s.clone();
}
void compute( Vector<Real> &s, const Vector<Real> &x,
Objective<Real> &obj, BoundConstraint<Real> &bnd,
AlgorithmState<Real> &algo_state ) {
Real one(1);
Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
// Build Hessian and Preconditioner object
Teuchos::RCP<Objective<Real> > obj_ptr = Teuchos::rcpFromRef(obj);
Teuchos::RCP<BoundConstraint<Real> > bnd_ptr = Teuchos::rcpFromRef(bnd);
Teuchos::RCP<LinearOperator<Real> > hessian
= Teuchos::rcp(new HessianPNK(obj_ptr,bnd_ptr,algo_state.iterateVec,
step_state->gradientVec,algo_state.gnorm));
Teuchos::RCP<LinearOperator<Real> > precond;
if (useSecantPrecond_) {
precond = Teuchos::rcp(new PrecondPNK(secant_,bnd_ptr,
algo_state.iterateVec,step_state->gradientVec,algo_state.gnorm));
}
else {
precond = Teuchos::rcp(new PrecondPNK(obj_ptr,bnd_ptr,
algo_state.iterateVec,step_state->gradientVec,algo_state.gnorm));
}
// Run Krylov method
flagKrylov_ = 0;
krylov_->run(s,*hessian,*(step_state->gradientVec),*precond,iterKrylov_,flagKrylov_);
// Check Krylov flags
if ( flagKrylov_ == 2 && iterKrylov_ <= 1 ) {
s.set((step_state->gradientVec)->dual());
}
s.scale(-one);
}
void update( Vector<Real> &x, const Vector<Real> &s,
Objective<Real> &obj, BoundConstraint<Real> &bnd,
AlgorithmState<Real> &algo_state ) {
Real tol = std::sqrt(ROL_EPSILON<Real>()), one(1);
Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
// Update iterate and store previous step
algo_state.iter++;
d_->set(x);
x.plus(s);
bnd.project(x);
(step_state->descentVec)->set(x);
(step_state->descentVec)->axpy(-one,*d_);
algo_state.snorm = s.norm();
// Compute new gradient
if ( useSecantPrecond_ ) {
gp_->set(*(step_state->gradientVec));
}
obj.update(x,true,algo_state.iter);
if ( computeObj_ ) {
algo_state.value = obj.value(x,tol);
algo_state.nfval++;
}
obj.gradient(*(step_state->gradientVec),x,tol);
algo_state.ngrad++;
// Update Secant Information
if ( useSecantPrecond_ ) {
secant_->updateStorage(x,*(step_state->gradientVec),*gp_,s,algo_state.snorm,algo_state.iter+1);
}
// Update algorithm state
(algo_state.iterateVec)->set(x);
if ( useProjectedGrad_ ) {
gp_->set(*(step_state->gradientVec));
bnd.computeProjectedGradient( *gp_, x );
algo_state.gnorm = gp_->norm();
}
else {
d_->set(x);
d_->axpy(-one,(step_state->gradientVec)->dual());
bnd.project(*d_);
d_->axpy(-one,x);
algo_state.gnorm = d_->norm();
}
}
std::string printHeader( void ) const {
std::stringstream hist;
if( verbosity_>0 ) {
hist << std::string(109,'-') << "\n";
hist << EDescentToString(DESCENT_NEWTONKRYLOV);
hist << " status output definitions\n\n";
hist << " iter - Number of iterates (steps taken) \n";
hist << " value - Objective function value \n";
hist << " gnorm - Norm of the gradient\n";
hist << " snorm - Norm of the step (update to optimization vector)\n";
hist << " #fval - Cumulative number of times the objective function was evaluated\n";
hist << " #grad - Number of times the gradient was computed\n";
hist << " iterCG - Number of Krylov iterations used to compute search direction\n";
hist << " flagCG - Krylov solver flag" << "\n";
hist << std::string(109,'-') << "\n";
}
hist << " ";
hist << std::setw(6) << std::left << "iter";
hist << std::setw(15) << std::left << "value";
hist << std::setw(15) << std::left << "gnorm";
hist << std::setw(15) << std::left << "snorm";
hist << std::setw(10) << std::left << "#fval";
hist << std::setw(10) << std::left << "#grad";
hist << std::setw(10) << std::left << "iterCG";
hist << std::setw(10) << std::left << "flagCG";
hist << "\n";
return hist.str();
}
std::string printName( void ) const {
std::stringstream hist;
hist << "\n" << EDescentToString(DESCENT_NEWTONKRYLOV);
hist << " using " << krylovName_;
if ( useSecantPrecond_ ) {
hist << " with " << secantName_ << " preconditioning";
}
hist << "\n";
return hist.str();
}
std::string print( AlgorithmState<Real> &algo_state, bool print_header = false ) const {
std::stringstream hist;
hist << std::scientific << std::setprecision(6);
if ( algo_state.iter == 0 ) {
hist << printName();
}
if ( print_header ) {
hist << printHeader();
}
if ( algo_state.iter == 0 ) {
hist << " ";
hist << std::setw(6) << std::left << algo_state.iter;
hist << std::setw(15) << std::left << algo_state.value;
hist << std::setw(15) << std::left << algo_state.gnorm;
hist << "\n";
}
else {
hist << " ";
hist << std::setw(6) << std::left << algo_state.iter;
hist << std::setw(15) << std::left << algo_state.value;
hist << std::setw(15) << std::left << algo_state.gnorm;
hist << std::setw(15) << std::left << algo_state.snorm;
hist << std::setw(10) << std::left << algo_state.nfval;
hist << std::setw(10) << std::left << algo_state.ngrad;
hist << std::setw(10) << std::left << iterKrylov_;
hist << std::setw(10) << std::left << flagKrylov_;
hist << "\n";
}
return hist.str();
}
}; // class ProjectedNewtonKrylovStep
} // namespace ROL
#endif
|