This file is indexed.

/usr/include/trilinos/ROL_QuadraticPenalty.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_QUADRATICPENALTY_H
#define ROL_QUADRATICPENALTY_H

#include "ROL_Objective.hpp"
#include "ROL_EqualityConstraint.hpp"
#include "ROL_Vector.hpp"
#include "ROL_Types.hpp"
#include "Teuchos_RCP.hpp"
#include <iostream>

/** @ingroup func_group
    \class ROL::QuadraticPenalty
    \brief Provides the interface to evaluate the quadratic constraint penalty.

    This class implements the quadratic constraint penalty functional.
    Given an equality constraint \f$c:\mathcal{X}\to\mathcal{C}\f$, the
    quadratic penalty functional is
    \f[
       Q(x,\lambda,\mu) =
           \langle \lambda, c(x)\rangle_{\mathcal{C}^*,\mathcal{C}} +
           \frac{\mu}{2} \langle \mathfrak{R}c(x),c(x)\rangle_{\mathcal{C}^*,\mathcal{C}}
    \f]
    where \f$\lambda\in\mathcal{C}^*\f$ denotes a multiplier,
    \f$\mu > 0\f$ is the penalty parameter and
    \f$\mathfrak{R}\in\mathcal{L}(\mathcal{C},\mathcal{C}^*)\f$ is the Riesz operator
    on the constraint space.

    This implementation permits the scaling of \f$Q\f$ by \f$\mu^{-1}\f$ and also
    permits the Hessian approximation
    \f[
        \nabla^2_x Q(x,\lambda,\mu)v \approx \mu c'(x)^*\mathfrak{R} c'(x)v.
    \f]

    ---
*/


namespace ROL {

template <class Real>
class QuadraticPenalty : public Objective<Real> {
private:
  // Required for quadratic penalty definition
  const Teuchos::RCP<EqualityConstraint<Real> > con_;
  Teuchos::RCP<Vector<Real> > multiplier_;
  Real penaltyParameter_;

  // Auxiliary storage
  Teuchos::RCP<Vector<Real> > primalMultiplierVector_;
  Teuchos::RCP<Vector<Real> > dualOptVector_;
  Teuchos::RCP<Vector<Real> > primalConVector_;

  // Constraint evaluations
  Teuchos::RCP<Vector<Real> > conValue_;

  // Evaluation counters
  int ncval_;

  // User defined options
  const bool useScaling_;
  const int HessianApprox_;

  // Flags to recompute quantities
  bool isConstraintComputed_;

  void evaluateConstraint(const Vector<Real> &x, Real &tol) {
    if ( !isConstraintComputed_ ) {
      // Evaluate constraint
      con_->value(*conValue_,x,tol); ncval_++;
      isConstraintComputed_ = true;
    }
  }

public:
  QuadraticPenalty(const Teuchos::RCP<EqualityConstraint<Real> > &con,
                   const Vector<Real> &multiplier,
                   const Real penaltyParameter,
                   const Vector<Real> &optVec,
                   const Vector<Real> &conVec,
                   const bool useScaling = false,
                   const int HessianApprox = 0 )
    : con_(con), penaltyParameter_(penaltyParameter), ncval_(0),
      useScaling_(useScaling), HessianApprox_(HessianApprox), isConstraintComputed_(false) {

    dualOptVector_          = optVec.dual().clone();
    primalConVector_        = conVec.clone();
    conValue_               = conVec.clone();
    multiplier_             = multiplier.clone();
    primalMultiplierVector_ = multiplier.clone();
  }

  virtual void update( const Vector<Real> &x, bool flag = true, int iter = -1 ) {
    con_->update(x,flag,iter);
    isConstraintComputed_ = ( flag ? false : isConstraintComputed_ );
  }

  virtual Real value( const Vector<Real> &x, Real &tol ) {
    // Evaluate constraint
    evaluateConstraint(x,tol);
    // Apply Lagrange multiplier to constraint
    Real cval = multiplier_->dot(conValue_->dual());
    // Compute penalty term
    Real pval = conValue_->dot(*conValue_);
    // Compute quadratic penalty value
    const Real half(0.5);
    Real val(0);
    if (useScaling_) {
      val = cval/penaltyParameter_ + half*pval;
    }
    else {
      val = cval + half*penaltyParameter_*pval;
    }
    return val;
  }

  virtual void gradient( Vector<Real> &g, const Vector<Real> &x, Real &tol ) {
    // Evaluate constraint
    evaluateConstraint(x,tol);
    // Compute gradient of Augmented Lagrangian
    const Real one(1);
    primalMultiplierVector_->set(conValue_->dual());
    if ( useScaling_ ) {
      primalMultiplierVector_->axpy(one/penaltyParameter_,*multiplier_);
    }
    else {
      primalMultiplierVector_->scale(penaltyParameter_);
      primalMultiplierVector_->plus(*multiplier_);
    }
    con_->applyAdjointJacobian(g,*primalMultiplierVector_,x,tol);
  }

  virtual void hessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &x, Real &tol ) {
    // Apply objective Hessian to a vector
    if (HessianApprox_ < 3) {
      con_->applyJacobian(*primalConVector_,v,x,tol);
      con_->applyAdjointJacobian(hv,primalConVector_->dual(),x,tol);
      if (!useScaling_) {
        hv.scale(penaltyParameter_);
      }

      if (HessianApprox_ == 1) {
        // Apply Augmented Lagrangian Hessian to a vector
        const Real one(1);
        primalMultiplierVector_->set(*multiplier_);
        if ( useScaling_ ) {
          primalMultiplierVector_->scale(one/penaltyParameter_);
        }
        con_->applyAdjointHessian(*dualOptVector_,*primalMultiplierVector_,v,x,tol);
        hv.plus(*dualOptVector_);
      }

      if (HessianApprox_ == 0) {
        // Evaluate constraint
        evaluateConstraint(x,tol);
        // Apply Augmented Lagrangian Hessian to a vector
        const Real one(1);
        primalMultiplierVector_->set(conValue_->dual());
        if ( useScaling_ ) {
          primalMultiplierVector_->axpy(one/penaltyParameter_,*multiplier_);
        }
        else {
          primalMultiplierVector_->scale(penaltyParameter_);
          primalMultiplierVector_->plus(*multiplier_);
        }
        con_->applyAdjointHessian(*dualOptVector_,*primalMultiplierVector_,v,x,tol);
        hv.plus(*dualOptVector_);
      }
    }
    else {
      hv.zero();
    }
  }

  // Return constraint value
  virtual void getConstraintVec(Vector<Real> &c, const Vector<Real> &x) {
    Real tol = std::sqrt(ROL_EPSILON<Real>());
    // Evaluate constraint
    evaluateConstraint(x,tol);
    c.set(*conValue_);
  }

  // Return total number of constraint evaluations
  virtual int getNumberConstraintEvaluations(void) const {
    return ncval_;
  }

  // Reset with upated penalty parameter
  virtual void reset(const Vector<Real> &multiplier, const Real penaltyParameter) {
    ncval_ = 0;
    multiplier_->set(multiplier);
    penaltyParameter_ = penaltyParameter;
  }
}; // class AugmentedLagrangian

} // namespace ROL

#endif