This file is indexed.

/usr/include/trilinos/ROL_Rosenbrock.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

/** \file
    \brief  Contains definitions for Rosenbrock's function.
    \author Created by D. Ridzal and D. Kouri.
 */

// Whether or not to use the exact Hessian-times-a-vector
#ifndef USE_HESSVEC 
#define USE_HESSVEC 1
#endif

#ifndef ROL_ROSENBROCK_HPP
#define ROL_ROSENBROCK_HPP

#include "ROL_StdVector.hpp"
#include "ROL_Objective.hpp"

namespace ROL {
namespace ZOO {

/** \brief Rosenbrock's function.
 */
template< class Real, class XPrim=StdVector<Real>, class XDual=StdVector<Real> >
class Objective_Rosenbrock : public Objective<Real> {

  typedef std::vector<Real> vector;
  typedef Vector<Real>      V;    

  typedef typename vector::size_type uint;

private:
  Real alpha_;

  Real const1_;
  Real const2_;

  template<class VectorType> 
  Teuchos::RCP<const vector> getVector( const V& x ) {
    return Teuchos::dyn_cast<const VectorType>((x)).getVector();
  }

  template<class VectorType> 
  Teuchos::RCP<vector> getVector( V& x ) {
    return Teuchos::dyn_cast<VectorType>(x).getVector();
  }

public:
  Objective_Rosenbrock(Real alpha = 100.0) : alpha_(alpha), const1_(100.0), const2_(20.0) {}

  Real value( const Vector<Real> &x, Real &tol ) {

    using Teuchos::RCP;
    RCP<const vector> xp = getVector<XPrim>(x);

    uint n = xp->size();
    Real val = 0;
    for( uint i=0; i<n/2; i++ ) {
      val += alpha_ * pow(pow((*xp)[2*i],2) - (*xp)[2*i+1], 2);
      val += pow((*xp)[2*i] - 1.0, 2);
    }

    //////  ADD INEXACTNESS
    //Real error = tol*(2.0*((Real)rand())/((Real)RAND_MAX)-1.0);
    //val += this->const1_*error; 

    return val;
  }

  void gradient( Vector<Real> &g, const Vector<Real> &x, Real &tol ) {

    using Teuchos::RCP;
    RCP<const vector> xp = getVector<XPrim>(x);
    RCP<vector> gp = getVector<XDual>(g);

    uint n = xp->size();
    for( uint i=0; i<n/2; i++ ) {
      (*gp)[2*i]   =  4.0*alpha_*(pow((*xp)[2*i],2) - (*xp)[2*i+1])*(*xp)[2*i] + 2.0*((*xp)[2*i]-1.0);
      (*gp)[2*i+1] = -2.0*alpha_*(pow((*xp)[2*i],2) - (*xp)[2*i+1]);

      //////  ADD INEXACTNESS
      //Real error0        = tol*(2.0*((Real)rand())/((Real)RAND_MAX)-1.0);
      //Real error1        = tol*(2.0*((Real)rand())/((Real)RAND_MAX)-1.0);
      //(*gp)[2*i]   += this->const2_*error0/std::sqrt(n);
      //(*gp)[2*i+1] += this->const2_*error1/std::sqrt(n);
    }
  }
#if USE_HESSVEC
  void hessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &x, Real &tol ) {

    using Teuchos::RCP;
    RCP<const vector> xp = getVector<XPrim>(x);
    RCP<const vector> vp = getVector<XPrim>(v);
    RCP<vector> hvp = getVector<XDual>(hv);

    uint n = xp->size();
    for( uint i=0; i<n/2; i++ ) {
      Real h11 = 4.0*alpha_*(3.0*pow((*xp)[2*i],2)-(*xp)[2*i+1]) + 2.0;
      Real h12 = -4.0*alpha_*(*xp)[2*i];
      Real h22 = 2.0*alpha_;

      (*hvp)[2*i]   = h11*(*vp)[2*i] + h12*(*vp)[2*i+1];
      (*hvp)[2*i+1] = h12*(*vp)[2*i] + h22*(*vp)[2*i+1];
    }
  }
#endif
  void invHessVec( Vector<Real> &hv, const Vector<Real> &v, const Vector<Real> &x, Real &tol ) {
  
    using Teuchos::RCP; 
  
    RCP<const vector> xp = getVector<XPrim>(x);
    RCP<const vector> vp = getVector<XDual>(v);
    RCP<vector> hvp = getVector<XPrim>(hv);

    uint n = xp->size();
    for( uint i=0; i<n/2; i++ ) {
      Real h11 = 4.0*alpha_*(3.0*pow((*xp)[2*i],2)-(*xp)[2*i+1]) + 2.0;
      Real h12 = -4.0*alpha_*(*xp)[2*i];
      Real h22 = 2.0*alpha_;

      (*hvp)[2*i]   = (1.0/(h11*h22-h12*h12))*( h22*(*vp)[2*i] - h12*(*vp)[2*i+1]);
      (*hvp)[2*i+1] = (1.0/(h11*h22-h12*h12))*(-h12*(*vp)[2*i] + h11*(*vp)[2*i+1]);
    }
  }
};

template<class Real, class XPrim, class XDual>
void getRosenbrock( Teuchos::RCP<Objective<Real> > &obj,
                    Teuchos::RCP<Vector<Real> >    &x0,
                    Teuchos::RCP<Vector<Real> >    &x ) {
  // Problem dimension
  int n = 100;

  // Get Initial Guess
  Teuchos::RCP<std::vector<Real> > x0p = Teuchos::rcp(new std::vector<Real>(n,0.0));
  for ( int i = 0; i < n/2; i++ ) {
    (*x0p)[2*i]   = -1.2;
    (*x0p)[2*i+1] =  1.0;
  }
  x0 = Teuchos::rcp(new XPrim(x0p));

  // Get Solution
  Teuchos::RCP<std::vector<Real> > xp = Teuchos::rcp(new std::vector<Real>(n,0.0));
  for ( int i = 0; i < n; i++ ) {
    (*xp)[i] = 1.0;
  }
  x = Teuchos::rcp(new XPrim(xp));

  // Instantiate Objective Function
  obj = Teuchos::rcp(new Objective_Rosenbrock<Real, XPrim, XDual>);
}

}// End ZOO Namespace
}// End ROL Namespace

#endif