/usr/include/trilinos/ROL_SROMGenerator.hpp is in libtrilinos-rol-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_SROMGENERATOR_HPP
#define ROL_SROMGENERATOR_HPP
#include "ROL_SampleGenerator.hpp"
#include "ROL_Objective.hpp"
#include "ROL_BoundConstraint.hpp"
#include "ROL_ScalarLinearEqualityConstraint.hpp"
#include "ROL_Algorithm.hpp"
#include "ROL_BoundConstraint.hpp"
#include "ROL_MomentObjective.hpp"
#include "ROL_CDFObjective.hpp"
#include "ROL_LinearCombinationObjective.hpp"
#include "ROL_SROMVector.hpp"
#include "ROL_StdVector.hpp"
namespace ROL {
template<class Real>
class SROMGenerator : public SampleGenerator<Real> {
private:
// Parameterlist for optimization
Teuchos::ParameterList parlist_;
// Vector of distributions (size = dimension of space)
std::vector<Teuchos::RCP<Distribution<Real> > > dist_;
const int dimension_;
int numSamples_;
int numMySamples_;
int numNewSamples_;
bool adaptive_;
bool print_;
Real ptol_;
Real atol_;
void pruneSamples(const ProbabilityVector<Real> &prob,
const AtomVector<Real> &atom) {
// Remove points with zero weight
std::vector<std::vector<Real> > pts;
std::vector<Real> wts;
for (int i = 0; i < numMySamples_; i++) {
if ( prob.getProbability(i) > ptol_ ) {
pts.push_back(*(atom.getAtom(i)));
wts.push_back(prob.getProbability(i));
}
}
numMySamples_ = wts.size();
// Remove atoms that are within atol of each other
Real err = 0.0;
std::vector<Real> pt;
std::vector<int> ind;
for (int i = 0; i < numMySamples_; i++) {
pt = pts[i]; ind.clear();
for (int j = i+1; j < numMySamples_; j++) {
err = 0.0;
for (int d = 0; d < dimension_; d++) {
err += std::pow(pt[d] - pts[j][d],2);
}
err = std::sqrt(err);
if ( err < atol_ ) {
ind.push_back(j);
for (int d = 0; d < dimension_; d++) {
pts[i][d] += pts[j][d];
wts[i] += wts[j];
}
}
}
if ( ind.size() > 0 ) {
for (int d = 0; d < dimension_; d++) {
pts[i][d] /= (Real)(ind.size()+1);
}
for (int k = ind.size()-1; k >= 0; k--) {
pts.erase(pts.begin()+ind[k]);
wts.erase(wts.begin()+ind[k]);
}
}
numMySamples_ = wts.size();
}
// Renormalize weights
Real psum = 0.0, sum = 0.0;
for (int i = 0; i < numMySamples_; i++) {
psum += wts[i];
}
SampleGenerator<Real>::sumAll(&psum,&sum,1);
for (int i = 0; i < numMySamples_; i++) {
wts[i] /= sum;
}
// Set points and weights
SampleGenerator<Real>::setPoints(pts);
SampleGenerator<Real>::setWeights(wts);
}
public:
SROMGenerator(Teuchos::ParameterList &parlist,
const Teuchos::RCP<BatchManager<Real> > &bman,
const std::vector<Teuchos::RCP<Distribution<Real> > > &dist)
: SampleGenerator<Real>(bman), parlist_(parlist), dist_(dist),
dimension_(dist.size()) {
// Get SROM sublist
Teuchos::ParameterList list = parlist.sublist("SOL").sublist("Sample Generator").sublist("SROM");
numSamples_ = list.get("Number of Samples",50);
adaptive_ = list.get("Adaptive Sampling",false);
numNewSamples_ = list.get("Number of New Samples Per Adaptation",0);
print_ = list.get("Output to Screen",false);
ptol_ = list.get("Probability Tolerance",1.e2*std::sqrt(ROL_EPSILON<Real>()));
atol_ = list.get("Atom Tolerance",1.e2*std::sqrt(ROL_EPSILON<Real>()));
print_ *= !SampleGenerator<Real>::batchID();
// Compute batch local number of samples
int rank = (int)SampleGenerator<Real>::batchID();
int nProc = (int)SampleGenerator<Real>::numBatches();
int frac = numSamples_ / nProc;
int rem = numSamples_ % nProc;
numMySamples_ = frac + ((rank < rem) ? 1 : 0);
// Initialize vectors
Teuchos::RCP<ProbabilityVector<Real> > prob, prob_lo, prob_hi, prob_eq;
Teuchos::RCP<AtomVector<Real> > atom, atom_lo, atom_hi, atom_eq;
Teuchos::RCP<Vector<Real> > x, x_lo, x_hi, x_eq;
initialize_vectors(prob,prob_lo,prob_hi,prob_eq,atom,atom_lo,atom_hi,atom_eq,x,x_lo,x_hi,x_eq,bman);
Teuchos::RCP<Vector<Real> > l
= Teuchos::rcp(new StdVector<Real>(Teuchos::rcp(new std::vector<Real>(1,0.))));
bool optProb = false, optAtom = true;
for ( int i = 0; i < 2; i++ ) {
if ( i == 0 ) { optProb = false; optAtom = true; }
if ( i == 1 ) { optProb = true; optAtom = true; }
// Initialize objective function
std::vector<Teuchos::RCP<Objective<Real> > > obj_vec;
Teuchos::RCP<Objective<Real> > obj;
initialize_objective(obj_vec,obj,dist,bman,optProb,optAtom,list);
// Initialize constraints
Teuchos::RCP<BoundConstraint<Real> > bnd
= Teuchos::rcp(new BoundConstraint<Real>(x_lo,x_hi));
Teuchos::RCP<EqualityConstraint<Real> > con
= Teuchos::rcp(new ScalarLinearEqualityConstraint<Real>(x_eq,1.0));
// Test objective and constraints
if ( print_ ) { std::cout << "\nCheck derivatives of CDFObjective\n"; }
check_objective(*x,obj_vec[0],bman,optProb,optAtom);
if ( print_ ) { std::cout << "\nCheck derivatives of MomentObjective\n"; }
check_objective(*x,obj_vec[1],bman,optProb,optAtom);
if ( print_ ) { std::cout << "\nCheck derivatives of LinearCombinationObjective\n"; }
check_objective(*x,obj,bman,optProb,optAtom);
if ( print_ && optProb ) { std::cout << "\nCheck ScalarLinearEqualityConstraint\n"; }
check_constraint(*x,con,bman,optProb);
// Solve optimization problems to sample
Teuchos::RCP<Algorithm<Real> > algo;
initialize_optimizer(algo,list,optProb);
if ( optProb ) {
std::string type = list.sublist("Step").get("Type","Trust Region");
Teuchos::RCP<Teuchos::ParameterList> plist = Teuchos::rcpFromRef(list);
Teuchos::RCP<OptimizationProblem<Real> > optProblem;
if (type == "Augmented Lagrangian") {
Teuchos::RCP<Objective<Real> > augLag
= Teuchos::rcp(new AugmentedLagrangian<Real>(obj,con,*l,1.,*x,l->dual(),parlist));
optProblem = Teuchos::rcp(new OptimizationProblem<Real>(augLag,x,bnd,con,l,plist));
}
else if (type == "Moreau-Yosida Penalty") {
Teuchos::RCP<Objective<Real> > myPen
= Teuchos::rcp(new MoreauYosidaPenalty<Real>(obj,bnd,*x,parlist));
optProblem = Teuchos::rcp(new OptimizationProblem<Real>(myPen,x,bnd,con,l,plist));
}
else {
optProblem = Teuchos::rcp(new OptimizationProblem<Real>(obj,x,bnd,con,l,plist));
}
//ROL::OptimizationProblem<Real> optProblem(obj,x,bnd,con,l,plist);
algo->run(*optProblem,print_);
}
else {
algo->run(*x,*obj,*bnd,print_);
}
}
// Prune samples with zero weight and set samples/weights
pruneSamples(*prob,*atom);
}
void refine(void) {}
private:
void get_scaling_vectors(std::vector<Real> &typw, std::vector<Real> &typx) const {
typw.clear(); typx.clear();
typw.resize(numMySamples_,(Real)(numSamples_*numSamples_));
typx.resize(numMySamples_*dimension_,0);
Real mean = 1, var = 1, one(1);
for (int j = 0; j < dimension_; j++) {
mean = std::abs(dist_[j]->moment(1));
var = dist_[j]->moment(2) - mean*mean;
mean = ((mean > ROL_EPSILON<Real>()) ? mean : std::sqrt(var));
mean = ((mean > ROL_EPSILON<Real>()) ? mean : one);
for (int i = 0; i < numMySamples_; i++) {
typx[i*dimension_ + j] = one/(mean*mean);
}
}
}
void initialize_vectors(Teuchos::RCP<ProbabilityVector<Real> > &prob,
Teuchos::RCP<ProbabilityVector<Real> > &prob_lo,
Teuchos::RCP<ProbabilityVector<Real> > &prob_hi,
Teuchos::RCP<ProbabilityVector<Real> > &prob_eq,
Teuchos::RCP<AtomVector<Real> > &atom,
Teuchos::RCP<AtomVector<Real> > &atom_lo,
Teuchos::RCP<AtomVector<Real> > &atom_hi,
Teuchos::RCP<AtomVector<Real> > &atom_eq,
Teuchos::RCP<Vector<Real> > &vec,
Teuchos::RCP<Vector<Real> > &vec_lo,
Teuchos::RCP<Vector<Real> > &vec_hi,
Teuchos::RCP<Vector<Real> > &vec_eq,
const Teuchos::RCP<BatchManager<Real> > &bman) const {
// Compute scaling for probability and atom vectors
std::vector<Real> typx, typw;
get_scaling_vectors(typw,typx);
// Compute initial guess and bounds for probability and atom vectors
std::vector<Real> pt(dimension_*numMySamples_,0.), wt(numMySamples_,1./(Real)numSamples_);
std::vector<Real> pt_lo(dimension_*numMySamples_,0.), pt_hi(dimension_*numMySamples_,0.);
std::vector<Real> wt_lo(numMySamples_,0.), wt_hi(numMySamples_,1.);
std::vector<Real> pt_eq(dimension_*numMySamples_,0.), wt_eq(numMySamples_,1.);
Real lo = 0., hi = 0.;
srand(12345*SampleGenerator<Real>::batchID());
for ( int j = 0; j < dimension_; j++) {
lo = dist_[j]->lowerBound();
hi = dist_[j]->upperBound();
for (int i = 0; i < numMySamples_; i++) {
pt[i*dimension_ + j] = dist_[j]->invertCDF((Real)rand()/(Real)RAND_MAX);
//pt[i*dimension_ + j] = dist_[j]->invertCDF(0);
pt_lo[i*dimension_ + j] = lo;
pt_hi[i*dimension_ + j] = hi;
}
}
// Build probability, atom, and SROM vectors
prob = Teuchos::rcp(new PrimalProbabilityVector<Real>(
Teuchos::rcp(new std::vector<Real>(wt)),bman,
Teuchos::rcp(new std::vector<Real>(typw))));
atom = Teuchos::rcp(new PrimalAtomVector<Real>(
Teuchos::rcp(new std::vector<Real>(pt)),bman,numMySamples_,dimension_,
Teuchos::rcp(new std::vector<Real>(typx))));
vec = Teuchos::rcp(new SROMVector<Real>(prob,atom));
// Lower and upper bounds on Probability Vector
prob_lo = Teuchos::rcp(new PrimalProbabilityVector<Real>(
Teuchos::rcp(new std::vector<Real>(wt_lo)),bman,
Teuchos::rcp(new std::vector<Real>(typw))));
prob_hi = Teuchos::rcp(new PrimalProbabilityVector<Real>(
Teuchos::rcp(new std::vector<Real>(wt_hi)),bman,
Teuchos::rcp(new std::vector<Real>(typw))));
// Lower and upper bounds on Atom Vector
atom_lo = Teuchos::rcp(new PrimalAtomVector<Real>(
Teuchos::rcp(new std::vector<Real>(pt_lo)),bman,numMySamples_,dimension_,
Teuchos::rcp(new std::vector<Real>(typx))));
atom_hi = Teuchos::rcp(new PrimalAtomVector<Real>(
Teuchos::rcp(new std::vector<Real>(pt_hi)),bman,numMySamples_,dimension_,
Teuchos::rcp(new std::vector<Real>(typx))));
// Lower and upper bounds on SROM Vector
vec_lo = Teuchos::rcp(new SROMVector<Real>(prob_lo,atom_lo));
vec_hi = Teuchos::rcp(new SROMVector<Real>(prob_hi,atom_hi));
// Equality constraint vectors
prob_eq = Teuchos::rcp(new DualProbabilityVector<Real>(
Teuchos::rcp(new std::vector<Real>(wt_eq)),bman,
Teuchos::rcp(new std::vector<Real>(typw))));
atom_eq = Teuchos::rcp(new DualAtomVector<Real>(
Teuchos::rcp(new std::vector<Real>(pt_eq)),bman,numMySamples_,dimension_,
Teuchos::rcp(new std::vector<Real>(typx))));
vec_eq = Teuchos::rcp(new SROMVector<Real>(prob_eq,atom_eq));
}
void initialize_objective(std::vector<Teuchos::RCP<Objective<Real> > > &obj_vec,
Teuchos::RCP<Objective<Real> > &obj,
const std::vector<Teuchos::RCP<Distribution<Real> > > &dist,
const Teuchos::RCP<BatchManager<Real> > &bman,
const bool optProb, const bool optAtom,
Teuchos::ParameterList &list) const {
// Build CDF objective function
Real scale = list.get("CDF Smoothing Parameter",1.e-2);
obj_vec.push_back(Teuchos::rcp(new CDFObjective<Real>(dist,bman,scale,optProb,optAtom)));
// Build moment matching objective function
Teuchos::Array<int> tmp_order
= Teuchos::getArrayFromStringParameter<int>(list,"Moments");
std::vector<int> order(tmp_order.size(),0);
for ( int i = 0; i < tmp_order.size(); i++) {
order[i] = static_cast<int>(tmp_order[i]);
}
obj_vec.push_back(Teuchos::rcp(new MomentObjective<Real>(dist,order,bman,optProb,optAtom)));
// Build linear combination objective function
Teuchos::Array<Real> tmp_coeff
= Teuchos::getArrayFromStringParameter<Real>(list,"Coefficients");
std::vector<Real> coeff(2,0.);
coeff[0] = tmp_coeff[0]; coeff[1] = tmp_coeff[1];
obj = Teuchos::rcp(new LinearCombinationObjective<Real>(coeff,obj_vec));
}
void initialize_optimizer(Teuchos::RCP<Algorithm<Real> > &algo,
Teuchos::ParameterList &parlist,
const bool optProb) const {
std::string type = parlist.sublist("Step").get("Type","Trust Region");
if ( optProb ) {
if ( type == "Moreau-Yosida Penalty" ) {
algo = Teuchos::rcp(new Algorithm<Real>("Moreau-Yosida Penalty",parlist,false));
}
else if ( type == "Augmented Lagrangian" ) {
algo = Teuchos::rcp(new Algorithm<Real>("Augmented Lagrangian",parlist,false));
}
else {
algo = Teuchos::rcp(new Algorithm<Real>("Interior Point",parlist,false));
}
}
else {
algo = Teuchos::rcp(new Algorithm<Real>("Trust Region",parlist,false));
}
}
void check_objective(const Vector<Real> &x,
const Teuchos::RCP<Objective<Real> > &obj,
const Teuchos::RCP<BatchManager<Real> > &bman,
const bool optProb, const bool optAtom) {
// Get scaling for probability and atom vectors
std::vector<Real> typx, typw;
get_scaling_vectors(typw,typx);
// Set random direction
std::vector<Real> pt(dimension_*numMySamples_,0.), wt(numMySamples_,0.);
for (int i = 0; i < numMySamples_; i++) {
wt[i] = (optProb ? (Real)rand()/(Real)RAND_MAX : 0);
for ( int j = 0; j < dimension_; j++) {
pt[i*dimension_ + j] = (optAtom ? dist_[j]->invertCDF((Real)rand()/(Real)RAND_MAX) : 0);
}
}
Teuchos::RCP<ProbabilityVector<Real> > dprob
= Teuchos::rcp(new PrimalProbabilityVector<Real>(
Teuchos::rcp(new std::vector<Real>(wt)),bman,
Teuchos::rcp(new std::vector<Real>(typw))));
Teuchos::RCP<AtomVector<Real> > datom
= Teuchos::rcp(new PrimalAtomVector<Real>(
Teuchos::rcp(new std::vector<Real>(pt)),bman,numMySamples_,dimension_,
Teuchos::rcp(new std::vector<Real>(typx))));
SROMVector<Real> d = SROMVector<Real>(dprob,datom);
// Check derivatives
obj->checkGradient(x,d,print_);
obj->checkHessVec(x,d,print_);
}
void check_constraint(const Vector<Real> &x,
const Teuchos::RCP<EqualityConstraint<Real> > &con,
const Teuchos::RCP<BatchManager<Real> > &bman,
const bool optProb) {
if ( optProb ) {
StdVector<Real> c(Teuchos::rcp(new std::vector<Real>(1,1.0)));
// Get scaling for probability and atom vectors
std::vector<Real> typx, typw;
get_scaling_vectors(typw,typx);
// Set random direction
std::vector<Real> pt(dimension_*numMySamples_,0.), wt(numMySamples_,0.);
for (int i = 0; i < numMySamples_; i++) {
wt[i] = (Real)rand()/(Real)RAND_MAX;
for ( int j = 0; j < dimension_; j++) {
pt[i*dimension_ + j] = dist_[j]->invertCDF((Real)rand()/(Real)RAND_MAX);
}
}
Teuchos::RCP<ProbabilityVector<Real> > dprob
= Teuchos::rcp(new PrimalProbabilityVector<Real>(
Teuchos::rcp(new std::vector<Real>(wt)),bman,
Teuchos::rcp(new std::vector<Real>(typw))));
Teuchos::RCP<AtomVector<Real> > datom
= Teuchos::rcp(new PrimalAtomVector<Real>(
Teuchos::rcp(new std::vector<Real>(pt)),bman,numMySamples_,dimension_,
Teuchos::rcp(new std::vector<Real>(typx))));
SROMVector<Real> d = SROMVector<Real>(dprob,datom);
// Check derivatives
con->checkApplyJacobian(x,d,c,print_);
con->checkAdjointConsistencyJacobian(c,d,x,print_);
}
}
};
}
#endif
|