This file is indexed.

/usr/include/trilinos/ROL_Sacado_EqualityConstraint.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER


#ifndef ROL_SACADO_EQUALITYCONSTRAINT
#define ROL_SACADO_EQUALITYCONSTRAINT

#include "Sacado.hpp"
#include "ROL_StdVector.hpp"
#include "ROL_EqualityConstraint.hpp"
#include "ROL_InequalityConstraint.hpp"

namespace ROL {

//! \brief ROL interface wrapper for Sacado Constraint
template<class Real, template<class> class Constr>
class Sacado_EqualityConstraint : public virtual EqualityConstraint<Real> {

    protected:

        Constr<Real> constr_;

        int dim_;

        template<class ScalarT>
        void applyJacobianAD( Vector<ScalarT> &jv, const Vector<ScalarT> &v,
                              const Vector<ScalarT> &x, Real &tol );   
 
        template<class ScalarT>
        void applyAdjointJacobianAD( Vector<ScalarT> &aju, const Vector<ScalarT> &u,
                                     const Vector<ScalarT> &x, Real &tol);

        template<class ScalarT>
        void applyAdjointHessianAD( Vector<ScalarT> &ahuv, const Vector<ScalarT> &u,
                                    const Vector<ScalarT> &v, const Vector<ScalarT> &x, Real &tol);


    public: 
 
    Sacado_EqualityConstraint(int dim) : dim_(dim) {}
    Sacado_EqualityConstraint(const Constr<Real> & constr) : constr_(constr) {}

    virtual void value(Vector<Real> &c, const Vector<Real> &x, Real &tol) {
        constr_.value(c,x,tol);
    }
    
    virtual void applyJacobian(Vector<Real> &jv, const Vector<Real> &v, 
                       const Vector<Real> &x, Real &tol) {
        this->applyJacobianAD(jv,v,x,tol);
    }

    virtual void applyAdjointJacobian(Vector<Real> &aju, const Vector<Real> &u,
                              const Vector<Real> &x, Real &tol) {
        this->applyAdjointJacobianAD(aju,u,x,tol);
    } 

    void applyAdjointHessian(Vector<Real> &ahuv, const Vector<Real> &u,
                             const Vector<Real> &v, const Vector<Real> &x, Real &tol){
        this->applyAdjointHessianAD(ahuv,u,v,x,tol);
    }

};


template<class Real, template<class> class Constr>
template<class ScalarT>
void Sacado_EqualityConstraint<Real,Constr>::applyJacobianAD(Vector<ScalarT> &jv, const Vector<ScalarT> &v, 
                                                             const Vector<ScalarT> &x, Real &tol) {

    // Data type which supports automatic differentiation 
    typedef Sacado::Fad::DFad<ScalarT> FadType;
    typedef std::vector<FadType>       Fadvector;
    typedef std::vector<ScalarT>       vector;
    typedef StdVector<ScalarT>         SV;
  
    using Teuchos::RCP;       using Teuchos::rcp;
    using Teuchos::dyn_cast; 

    RCP<const vector> xp = dyn_cast<const SV>(x).getVector();

    int n = xp->size();

    // Get a pointer to the direction vector
    RCP<const vector> vp = dyn_cast<const SV>(v).getVector();

    RCP<vector> jvp = dyn_cast<SV>(jv).getVector();

    // Create a vector of independent variables
    RCP<Fadvector> x_fad_rcp = rcp( new Fadvector );
    x_fad_rcp->reserve(n);

    // Initialize constructor for each element
    for(int i=0; i<n; ++i) {
        x_fad_rcp->push_back(FadType(n,i,(*xp)[i])); 
    }

    // Create a vector of independent variables
    RCP<Fadvector> c_fad_rcp = rcp( new Fadvector );
    c_fad_rcp->reserve(dim_);

    for(int j=0; j<dim_; ++j) {
        c_fad_rcp->push_back(0);  
    }

    StdVector<FadType> x_fad(x_fad_rcp);
    StdVector<FadType> c_fad(c_fad_rcp);

    // Evaluate constraint     
    constr_.value(c_fad,x_fad,tol);

    for(int i=0; i<dim_; ++i) {
        (*jvp)[i] = 0;
        for(int j=0; j<n; ++j) {
            (*jvp)[i] += (*vp)[j]*(*c_fad_rcp)[i].dx(j); 
        }   
    }       
}



template<class Real, template<class> class Constr>
template<class ScalarT>
void Sacado_EqualityConstraint<Real,Constr>::applyAdjointJacobianAD(Vector<ScalarT> &aju, const Vector<ScalarT> &u, 
                                                                    const Vector<ScalarT> &x, Real &tol) {

   // Data type which supports automatic differentiation 
    typedef Sacado::Fad::DFad<ScalarT> FadType;
    typedef std::vector<FadType>       Fadvector;
    typedef std::vector<ScalarT>       vector;
    typedef StdVector<ScalarT>         SV;
  
    using Teuchos::RCP;       using Teuchos::rcp;
    using Teuchos::dyn_cast; 

    // Get a pointer to the optimization vector
    RCP<const vector> xp = dyn_cast<const SV>(x).getVector();

    // Get a pointer to the direction vector
    RCP<const vector> up = dyn_cast<const SV>(u).getVector();

    RCP<vector> ajup = dyn_cast<SV>(aju).getVector();

    int n = xp->size();

    // Create a vector of independent variables
    RCP<Fadvector> x_fad_rcp = rcp( new Fadvector );
    x_fad_rcp->reserve(n);

    // Initialize constructor for each element
    for(int i=0; i<n; ++i) {
        x_fad_rcp->push_back(FadType(n,i,(*xp)[i])); 
    }

    RCP<Fadvector> c_fad_rcp = rcp( new Fadvector );
    c_fad_rcp->reserve(dim_);
    for(int j=0; j<dim_; ++j) {
        c_fad_rcp->push_back(0);  
    }

    StdVector<FadType> x_fad(x_fad_rcp);
    StdVector<FadType> c_fad(c_fad_rcp);
 
    // Evaluate constraint
    constr_.value(c_fad,x_fad,tol);
    
    FadType udotc = 0;
    
    for(int j=0;j<dim_;++j){ 
        udotc += (*c_fad_rcp)[j]*(*up)[j];
    } 

    for(int i=0;i<n;++i){
        (*ajup)[i] = udotc.dx(i);
    } 
}


template<class Real, template<class> class Constr>
template<class ScalarT>
void Sacado_EqualityConstraint<Real,Constr>::applyAdjointHessianAD(Vector<ScalarT> &ahuv, const Vector<ScalarT> &u,
                                                                   const Vector<ScalarT> &v, const Vector<ScalarT> &x, 
                                                                   Real &tol){

    // Data type which supports automatic differentiation 
    typedef Sacado::Fad::SFad<ScalarT,1> FadType;
    typedef std::vector<FadType>         Fadvector;
    typedef std::vector<ScalarT>         vector;
    typedef StdVector<ScalarT>           SV;
  
    using Teuchos::RCP;       using Teuchos::rcp;
    using Teuchos::dyn_cast;

    // Get a pointer to the optimization vector
    RCP<const vector> xp = dyn_cast<const SV>(x).getVector();

    // Get a pointer to the dual constraint vector
    RCP<const vector> up = dyn_cast<const SV>(u).getVector();

    // Get a pointer to the direction vector
    RCP<const vector> vp = dyn_cast<const SV>(v).getVector();

    // Get a pointer to the directional adjoint Hessian 
    RCP<vector> ahuvp = dyn_cast<SV>(ahuv).getVector();

    // Number of optimization variables
    int n = xp->size();

    // Create a vector of independent variables
    RCP<Fadvector> x_fad_rcp = rcp( new Fadvector );
    x_fad_rcp->reserve(n);

    // Allocate for directional adjoint Jacobian
    RCP<Fadvector> aju_fad_rcp = rcp( new Fadvector );
    aju_fad_rcp->reserve(n);

    for(int i=0; i<n; ++i) {
        x_fad_rcp->push_back(FadType(1,(*xp)[i]));

        // Set derivative direction
        (*x_fad_rcp)[i].fastAccessDx(0) = (*vp)[i];     

        aju_fad_rcp->push_back(0);
    }

    // Allocate for constraint vector
    RCP<Fadvector> c_fad_rcp = rcp( new Fadvector );
    c_fad_rcp->reserve(dim_);

    // Allocate for dual constraint vector
    RCP<Fadvector> u_fad_rcp = rcp( new Fadvector );
    u_fad_rcp->reserve(dim_);

     for(int j=0; j<dim_; ++j) {
        u_fad_rcp->push_back((*up)[j]);
    }

    StdVector<FadType> x_fad(x_fad_rcp);
    StdVector<FadType> u_fad(u_fad_rcp);
    StdVector<FadType> aju_fad(aju_fad_rcp);

    // Evaluate constraint adjoint Jacobian direction
    this->applyAdjointJacobianAD( aju_fad, u_fad, x_fad, tol);

    for(int i=0; i<n; ++i) {
        (*ahuvp)[i] = (*aju_fad_rcp)[i].dx(0);             
    }
}

/* Here we use multiple inheritance because a distinct InequalityConstraint signature
 * is needed to satisfy the OptimizationProblem interface, but all of InequalityConstraint's
 * methods do the exact same thing as EqualityConstraint's. Multiple inheritance saves
 * on the amount of code needed, however, we do need to specify unique final overriders
 * for this class
 */
template<class Real, template<class> class Constr>
class Sacado_InequalityConstraint : public InequalityConstraint<Real>,
                                    public Sacado_EqualityConstraint<Real,Constr> {

  typedef Sacado_EqualityConstraint<Real,Constr> SEC;

public:
    Sacado_InequalityConstraint(int dim) : SEC(dim) {}
    Sacado_InequalityConstraint(const Constr<Real> & constr) : SEC(constr) {}

    void value(Vector<Real> &c, const Vector<Real> &x, Real &tol) {
      SEC::value(c,x,tol);    
    }
    
    void applyJacobian(Vector<Real> &jv, const Vector<Real> &v, 
                       const Vector<Real> &x, Real &tol) {
        SEC::applyJacobianAD(jv,v,x,tol);
    }

    void applyAdjointJacobian(Vector<Real> &aju, const Vector<Real> &u,
                              const Vector<Real> &x, Real &tol) {
        SEC::applyAdjointJacobianAD(aju,u,x,tol);
    } 

    void applyAdjointHessian(Vector<Real> &ahuv, const Vector<Real> &u,
                             const Vector<Real> &v, const Vector<Real> &x, Real &tol){
        SEC::applyAdjointHessianAD(ahuv,u,v,x,tol);
    }
};


}
#endif