This file is indexed.

/usr/include/trilinos/ROL_ScalarMinimizationLineSearch.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_ScalarMinimizationLineSearch_H
#define ROL_ScalarMinimizationLineSearch_H

/** \class ROL::ScalarMinimizationLineSearch
    \brief Implements line search methods that attempt to minimize the
           scalar function \f$\phi(t) := f(x+ts)\f$.
*/

#include "ROL_LineSearch.hpp"
#include "ROL_BrentsScalarMinimization.hpp"
#include "ROL_BisectionScalarMinimization.hpp"
#include "ROL_GoldenSectionScalarMinimization.hpp"
#include "ROL_ScalarFunction.hpp"
#include "ROL_Bracketing.hpp"

namespace ROL { 

template<class Real>
class ScalarMinimizationLineSearch : public LineSearch<Real> {
private:
  Teuchos::RCP<Vector<Real> >             xnew_; 
  Teuchos::RCP<Vector<Real> >             g_;
  Teuchos::RCP<ScalarMinimization<Real> > sm_;
  Teuchos::RCP<Bracketing<Real> >         br_;
  Teuchos::RCP<ScalarFunction<Real> >     sf_;

  ECurvatureCondition econd_;
  Real c1_;
  Real c2_;
  Real c3_;
  int max_nfval_;

  class Phi : public ScalarFunction<Real> {
  private:
    const Teuchos::RCP<Vector<Real> > xnew_;
    const Teuchos::RCP<Vector<Real> > g_;
    const Teuchos::RCP<const Vector<Real> > x_;
    const Teuchos::RCP<const Vector<Real> > s_;
    const Teuchos::RCP<Objective<Real> > obj_;
    const Teuchos::RCP<BoundConstraint<Real> > con_;
    Real ftol_;
    void updateIterate(Real alpha) {
      xnew_->set(*x_);
      xnew_->axpy(alpha,*s_);
      if ( con_->isActivated() ) {
        con_->project(*xnew_);
      }
    }
  public:
    Phi(const Teuchos::RCP<Vector<Real> > &xnew,
        const Teuchos::RCP<Vector<Real> > &g,
        const Teuchos::RCP<const Vector<Real> > &x,
        const Teuchos::RCP<const Vector<Real> > &s,
        const Teuchos::RCP<Objective<Real> > &obj,
        const Teuchos::RCP<BoundConstraint<Real> > &con)
     : xnew_(xnew), g_(g), x_(x), s_(s), obj_(obj), con_(con),
       ftol_(std::sqrt(ROL_EPSILON<Real>())) {}
    Real value(const Real alpha) {
      updateIterate(alpha);
      obj_->update(*xnew_);
      return obj_->value(*xnew_,ftol_);
    }
    Real deriv(const Real alpha) {
      updateIterate(alpha);
      obj_->update(*xnew_);
      obj_->gradient(*g_,*xnew_,ftol_);
      return s_->dot(g_->dual()); 
    }
  };

  class LineSearchStatusTest : public ScalarMinimizationStatusTest<Real> {
  private:
    Teuchos::RCP<ScalarFunction<Real> > phi_;

    const Real f0_;
    const Real g0_;

    const Real c1_;
    const Real c2_;
    const Real c3_;
    const int max_nfval_;
    const ECurvatureCondition econd_;


  public:
    LineSearchStatusTest(const Real f0, const Real g0,
                         const Real c1, const Real c2, const Real c3,
                         const int max_nfval, ECurvatureCondition econd,
                         const Teuchos::RCP<ScalarFunction<Real> > &phi)
      : phi_(phi), f0_(f0), g0_(g0), c1_(c1), c2_(c2), c3_(c3),
        max_nfval_(max_nfval), econd_(econd) {}

    bool check(Real &x, Real &fx, Real &gx,
               int &nfval, int &ngval, const bool deriv = false) {
      Real one(1), two(2);
      bool armijo = (fx <= f0_ + c1_*x*g0_);
//      bool itcond = (nfval >= max_nfval_);
      bool curvcond = false;
//      if (armijo && !itcond) {
      if (armijo) {
        if (econd_ == CURVATURECONDITION_GOLDSTEIN) {
          curvcond = (fx >= f0_ + (one-c1_)*x*g0_);
        }
        else if (econd_ == CURVATURECONDITION_NULL) {
          curvcond = true;
        }
        else {
          if (!deriv) {
            gx = phi_->deriv(x); ngval++;
          }
          if (econd_ == CURVATURECONDITION_WOLFE) {
            curvcond = (gx >= c2_*g0_);
          }
          else if (econd_ == CURVATURECONDITION_STRONGWOLFE) {
            curvcond = (std::abs(gx) <= c2_*std::abs(g0_));
          }
          else if (econd_ == CURVATURECONDITION_GENERALIZEDWOLFE) {
            curvcond = (c2_*g0_ <= gx && gx <= -c3_*g0_);
          }
          else if (econd_ == CURVATURECONDITION_APPROXIMATEWOLFE) {
            curvcond = (c2_*g0_ <= gx && gx <= (two*c1_ - one)*g0_);
          }
        }
      }
      //return (armijo && curvcond) || itcond;
      return (armijo && curvcond);
    }
  };

public:
  // Constructor
  ScalarMinimizationLineSearch( Teuchos::ParameterList &parlist, 
    const Teuchos::RCP<ScalarMinimization<Real> > &sm = Teuchos::null,
    const Teuchos::RCP<Bracketing<Real> > &br = Teuchos::null,
    const Teuchos::RCP<ScalarFunction<Real> > &sf  = Teuchos::null )
    : LineSearch<Real>(parlist) {
    Real zero(0), p4(0.4), p6(0.6), p9(0.9), oem4(1.e-4), oem10(1.e-10), one(1);
    Teuchos::ParameterList &list0 = parlist.sublist("Step").sublist("Line Search");
    Teuchos::ParameterList &list  = list0.sublist("Line-Search Method");
    // Get Bracketing Method
    if( br == Teuchos::null ) {
      br_ = Teuchos::rcp(new Bracketing<Real>());
    }
    else {
      br_ = br;
    }
    // Get ScalarMinimization Method
    std::string type = list.get("Type","Brent's");
    Real tol         = list.sublist(type).get("Tolerance",oem10);
    int niter        = list.sublist(type).get("Iteration Limit",1000);
    Teuchos::ParameterList plist;
    plist.sublist("Scalar Minimization").set("Type",type);
    plist.sublist("Scalar Minimization").sublist(type).set("Tolerance",tol);
    plist.sublist("Scalar Minimization").sublist(type).set("Iteration Limit",niter);

    if( sm == Teuchos::null ) { // No user-provided ScalarMinimization object

      if ( type == "Brent's" ) {
        sm_ = Teuchos::rcp(new BrentsScalarMinimization<Real>(plist));
      }
      else if ( type == "Bisection" ) {
        sm_ = Teuchos::rcp(new BisectionScalarMinimization<Real>(plist));
      }
      else if ( type == "Golden Section" ) {
        sm_ = Teuchos::rcp(new GoldenSectionScalarMinimization<Real>(plist));
      }
      else {
        TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument,
          ">>> (ROL::ScalarMinimizationLineSearch): Undefined ScalarMinimization type!");
      }
    }
    else {
      sm_ = sm;
    }

    sf_ = sf;


    // Status test for line search
    econd_ = StringToECurvatureCondition(list0.sublist("Curvature Condition").get("Type","Strong Wolfe Conditions"));
    max_nfval_ = list0.get("Function Evaluation Limit",20);
    c1_        = list0.get("Sufficient Decrease Tolerance",oem4);
    c2_        = list0.sublist("Curvature Condition").get("General Parameter",p9);
    c3_        = list0.sublist("Curvature Condition").get("Generalized Wolfe Parameter",p6);
    // Check status test inputs
    c1_ = ((c1_ < zero) ? oem4 : c1_);
    c2_ = ((c2_ < zero) ? p9   : c2_);
    c3_ = ((c3_ < zero) ? p9   : c3_);
    if ( c2_ <= c1_ ) {
      c1_ = oem4;
      c2_ = p9;
    }
    EDescent edesc = StringToEDescent(list0.sublist("Descent Method").get("Type","Quasi-Newton Method"));
    if ( edesc == DESCENT_NONLINEARCG ) {
      c2_ = p4;
      c3_ = std::min(one-c2_,c3_);
    }
  }

  void initialize( const Vector<Real> &x, const Vector<Real> &s, const Vector<Real> &g,
                   Objective<Real> &obj, BoundConstraint<Real> &con ) {
    LineSearch<Real>::initialize(x,s,g,obj,con);
    xnew_ = x.clone();
    g_    = g.clone();
  }

  // Find the minimum of phi(alpha) = f(x + alpha*s) using Brent's method
  void run( Real &alpha, Real &fval, int &ls_neval, int &ls_ngrad,
            const Real &gs, const Vector<Real> &s, const Vector<Real> &x, 
            Objective<Real> &obj, BoundConstraint<Real> &con ) {
    ls_neval = 0; ls_ngrad = 0;

    // Get initial line search parameter
    alpha = LineSearch<Real>::getInitialAlpha(ls_neval,ls_ngrad,fval,gs,x,s,obj,con);

    // Build ScalarFunction and ScalarMinimizationStatusTest
    Teuchos::RCP<const Vector<Real> > x_ptr = Teuchos::rcpFromRef(x);
    Teuchos::RCP<const Vector<Real> > s_ptr = Teuchos::rcpFromRef(s);
    Teuchos::RCP<Objective<Real> > obj_ptr = Teuchos::rcpFromRef(obj);
    Teuchos::RCP<BoundConstraint<Real> > bnd_ptr = Teuchos::rcpFromRef(con);


    Teuchos::RCP<ScalarFunction<Real> > phi;

    if( sf_ == Teuchos::null ) {
      phi = Teuchos::rcp(new Phi(xnew_,g_,x_ptr,s_ptr,obj_ptr,bnd_ptr));
    }
    else {
      phi = sf_;
    }

    Teuchos::RCP<ScalarMinimizationStatusTest<Real> > test
      = Teuchos::rcp(new LineSearchStatusTest(fval,gs,c1_,c2_,c3_,max_nfval_,econd_,phi));

    // Run Bracketing
    int nfval = 0, ngrad = 0;
    Real A(0),      fA = fval;
    Real B = alpha, fB = phi->value(B);
    br_->run(alpha,fval,A,fA,B,fB,nfval,ngrad,*phi,*test); 
    B = alpha;
    ls_neval += nfval; ls_ngrad += ngrad;

    // Run ScalarMinimization
    nfval = 0, ngrad = 0;
    sm_->run(fval, alpha, nfval, ngrad, *phi, A, B, *test);
    ls_neval += nfval; ls_ngrad += ngrad;

    LineSearch<Real>::setNextInitialAlpha(alpha); 
  }
};

}

#endif