This file is indexed.

/usr/include/trilinos/ROL_SchurComplement.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_SCHURCOMPLEMENT_H
#define ROL_SCHURCOMPLEMENT_H

#include "ROL_BlockOperator2UnitUpper.hpp"
#include "ROL_BlockOperator2UnitLower.hpp"
#include "ROL_BlockOperator2Diagonal.hpp"

namespace ROL {

/** @ingroup func_group
    \class ROL::SchurComplement
    \brief Given a 2x2 block operator, perform the Schur reduction and
           return the decoupled system components 

           Let \f$Mx=b\f$ where 
           \f[ M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \f]
           \f[ x = \begin{pmatrix} y & z \end{pmatrix} \f]
           \f[ b = \begin{pmayrix} u & v \end{pmatrix} \f]

           The block factorization is \f$ M=USL \f$ where 
           \f[ U = \begin{pmatrix} I & BD^{-1} \\ 0 & I \end{pmatrix} \f]
           \f[ S = \begin{pmatrix} A-BD^{-1}C & 0 \\ 0 & D \end{pmatrix} \f] 
           \f[ L = \begin{pmatrix} I & 0 \\ D^{-1} C & I \f]

           We can rewrite \f$ USLx=b\f$ as the block-decoupled problem \f$ Sw=c \f$
           where \f$w=Lx\f$ and \f$ c=U^{-1}b \f$

           The expectation here is that we will solve the equation for the first decoupled
           variable iteratively. 

    ---
*/

template class<Real> 
class SchurComplement {

  typedef Vector<Real>               V;
  typedef PartitionedVector<Real>    PV;
  typedef LinearOperator<Real>       OP;
  typedef BlockOperator2UnitUpper    UPPER;
  typedef BlockOperator2UnitLower    LOWER;
   
private:

  Teuchos::RCP<OP> A_, B_, C_, D_;

  Teuchos::RCP<OP> L_,U_;   
  Teuchos::RCP<V>  scratch1_;

  

public:

  SchurComplement( Teuchos::RCP<OP> &A, Teuchos::RCP<OP> &B,  
                   Teuchos::RCP<OP> &C, Teuchos::RCP<OP> &D, 
                   Teuchos::RCP<V> &scratch1 ) : 
                     A_(A), B_(B), C_(C), D_(D), scratch1_(scratch1) {

    U_ = rcp( new UPPER(B_) );
    L_ = rcp( new LOWER(C_) );

  }


  SchurComplement( BlockOperator2<Real> &op, Teuchos::RCP<Vector<Real> > &scratch1 ) :
    scratch1_(scratch1) {}

  using Teuchos::rcp;

  A_ = op.getOperator(0,0);
  B_ = op.getOperator(0,1);
  C_ = op.getOperator(1,0);
  D_ = op.getOperator(1,1);

  U_ = rcp( new UPPER(B_) );
  L_ = rcp( new LOWER(C_) );

  void applyLower( Vector<Real> &Hv, const Vector<Real> &v, Real &tol ) { 
    L_->apply(Hv,v,tol);
  }

  void applyLowerInverse( Vector<Real> &Hv, const Vector<Real> &v, Real &tol ) { 
    L_->applyInverse(Hv,v,tol);
  }

  void applyUpper( Vector<Real> &Hv, const Vector<Real> &v, Real &tol ) { 
    U_->apply(Hv,v,tol);
  }

  void applyUpperInverse( Vector<Real> &Hv, const Vector<Real> &v, Real &tol ) { 
    U_->applyInverse(Hv,v,tol);
  }

  Teuchos::RCP<OP> getS11( void ) { 
    return Teuchos::rcp(new BlockOperator2Determinant<Real>(A_,B_,C_,D_,scratch1_) );
  }

  void solve2( Vector<Real> &Hv2, const Vector<Real> &v2, Real &tol ) {
    D_->applyInverse(Hv2,v2,tol);
  }

}; // class SchurComplement


} // namesapce ROL

#endif // ROL_SCHURCOMPLEMENT_H