/usr/include/trilinos/ROL_SuperQuantileQuadrangle.hpp is in libtrilinos-rol-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_SUPERQUANTILEQUADRANGLE_HPP
#define ROL_SUPERQUANTILEQUADRANGLE_HPP
#include "ROL_SpectralRisk.hpp"
#include "ROL_GaussLegendreQuadrature.hpp"
#include "ROL_Fejer2Quadrature.hpp"
/** @ingroup risk_group
\class ROL::SuperQuantileQuadrangle
\brief Provides an interface for the risk measure associated with the
super quantile quadrangle.
The risk measure associated with the super quantile quadrangle is defined
as
\f[
\mathcal{R}(X) = \frac{1}{1-\beta}\int_\beta^1\mathrm{CVaR}_{\alpha}(X)
\,\mathrm{d}\alpha
\f]
where \f$0 \le \beta < 1\f$ and the conditional value-at-risk (CVaR) with
confidence level \f$0\le \alpha < 1\f$ is
\f[
\mathrm{CVaR}_\alpha(X) = \inf_{t\in\mathbb{R}} \left\{
t + \frac{1}{1-\alpha} \mathbb{E}\left[(X-t)_+\right]
\right\}
\f]
where \f$(x)_+ = \max\{0,x\}\f$. If the distribution of \f$X\f$ is
continuous, then \f$\mathrm{CVaR}_{\alpha}(X)\f$ is the conditional
expectation of \f$X\f$ exceeding the \f$\alpha\f$-quantile of \f$X\f$ and
the optimal \f$t\f$ is the \f$\alpha\f$-quantile.
Additionally, \f$\mathcal{R}\f$ is a law-invariant coherent risk measure.
ROL implements \f$\mathcal{R}\f$ by approximating the integral with
Gauss-Legendre or Fejer 2 quadrature. The corresponding quadrature points
and weights are then used to construct a ROL::MixedQuantileQuadrangle risk
measure. When using derivative-based optimization, the user can provide a
smooth approximation of \f$(\cdot)_+\f$ using the ROL::PlusFunction class.
*/
namespace ROL {
template<class Real>
class SuperQuantileQuadrangle : public SpectralRisk<Real> {
private:
Teuchos::RCP<PlusFunction<Real> > plusFunction_;
Real alpha_;
int nQuad_;
bool useGauss_;
std::vector<Real> wts_;
std::vector<Real> pts_;
void checkInputs(void) const {
TEUCHOS_TEST_FOR_EXCEPTION((alpha_ < 0 || alpha_ >= 1), std::invalid_argument,
">>> ERROR (ROL::SuperQuantileQuadrangle): Confidence level not between 0 and 1!");
TEUCHOS_TEST_FOR_EXCEPTION(plusFunction_ == Teuchos::null, std::invalid_argument,
">>> ERROR (ROL::SuperQuantileQuadrangle): PlusFunction pointer is null!");
}
void initialize(void) {
Teuchos::RCP<Quadrature1D<Real> > quad;
if ( useGauss_ ) {
quad = Teuchos::rcp(new GaussLegendreQuadrature<Real>(nQuad_));
}
else {
quad = Teuchos::rcp(new Fejer2Quadrature<Real>(nQuad_));
}
// quad->test();
quad->get(pts_,wts_);
Real sum(0), half(0.5), one(1);
for (int i = 0; i < nQuad_; ++i) {
sum += wts_[i];
}
for (int i = 0; i < nQuad_; ++i) {
wts_[i] /= sum;
pts_[i] = one - alpha_*(half*(pts_[i] + one));
}
SpectralRisk<Real>::buildMixedQuantile(pts_,wts_,plusFunction_);
}
public:
SuperQuantileQuadrangle( Teuchos::ParameterList &parlist )
: SpectralRisk<Real>() {
Teuchos::ParameterList &list
= parlist.sublist("SOL").sublist("Risk Measure").sublist("Super Quantile Quadrangle");
// Grab confidence level and quadrature order
alpha_ = list.get<Real>("Confidence Level");
nQuad_ = list.get("Number of Quadrature Points",5);
useGauss_ = list.get("Use Gauss-Legendre Quadrature",true);
plusFunction_ = Teuchos::rcp(new PlusFunction<Real>(list));
// Check inputs
checkInputs();
initialize();
}
SuperQuantileQuadrangle(const Real alpha,
const int nQuad,
const Teuchos::RCP<PlusFunction<Real> > &pf,
const bool useGauss = true)
: SpectralRisk<Real>(), plusFunction_(pf),
alpha_(alpha), nQuad_(nQuad), useGauss_(useGauss) {
// Check inputs
checkInputs();
initialize();
}
};
}
#endif
|