This file is indexed.

/usr/include/trilinos/ROL_SuperQuantileQuadrangle.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_SUPERQUANTILEQUADRANGLE_HPP
#define ROL_SUPERQUANTILEQUADRANGLE_HPP

#include "ROL_SpectralRisk.hpp"
#include "ROL_GaussLegendreQuadrature.hpp"
#include "ROL_Fejer2Quadrature.hpp"

/** @ingroup risk_group
    \class ROL::SuperQuantileQuadrangle
    \brief Provides an interface for the risk measure associated with the
           super quantile quadrangle.

    The risk measure associated with the super quantile quadrangle is defined
    as
    \f[
       \mathcal{R}(X) = \frac{1}{1-\beta}\int_\beta^1\mathrm{CVaR}_{\alpha}(X)
          \,\mathrm{d}\alpha
    \f]
    where \f$0 \le \beta < 1\f$ and the conditional value-at-risk (CVaR) with
    confidence level \f$0\le \alpha < 1\f$ is
    \f[
       \mathrm{CVaR}_\alpha(X) = \inf_{t\in\mathbb{R}} \left\{
         t + \frac{1}{1-\alpha} \mathbb{E}\left[(X-t)_+\right]
         \right\}
    \f]
    where \f$(x)_+ = \max\{0,x\}\f$.  If the distribution of \f$X\f$ is
    continuous, then \f$\mathrm{CVaR}_{\alpha}(X)\f$ is the conditional
    expectation of \f$X\f$ exceeding the \f$\alpha\f$-quantile of \f$X\f$ and
    the optimal \f$t\f$ is the \f$\alpha\f$-quantile.
    Additionally, \f$\mathcal{R}\f$ is a law-invariant coherent risk measure.

    ROL implements \f$\mathcal{R}\f$ by approximating the integral with
    Gauss-Legendre or Fejer 2 quadrature.  The corresponding quadrature points
    and weights are then used to construct a ROL::MixedQuantileQuadrangle risk
    measure.  When using derivative-based optimization, the user can provide a
    smooth approximation of \f$(\cdot)_+\f$ using the ROL::PlusFunction class.
*/

namespace ROL {

template<class Real>
class SuperQuantileQuadrangle : public SpectralRisk<Real> {
private:
  Teuchos::RCP<PlusFunction<Real> > plusFunction_;

  Real alpha_;
  int nQuad_;
  bool useGauss_;

  std::vector<Real> wts_;
  std::vector<Real> pts_;

  void checkInputs(void) const {
    TEUCHOS_TEST_FOR_EXCEPTION((alpha_ < 0 || alpha_ >= 1), std::invalid_argument,
      ">>> ERROR (ROL::SuperQuantileQuadrangle): Confidence level not between 0 and 1!");
    TEUCHOS_TEST_FOR_EXCEPTION(plusFunction_ == Teuchos::null, std::invalid_argument,
      ">>> ERROR (ROL::SuperQuantileQuadrangle): PlusFunction pointer is null!");
  }

  void initialize(void) {
    Teuchos::RCP<Quadrature1D<Real> > quad;
    if ( useGauss_ ) {
      quad = Teuchos::rcp(new GaussLegendreQuadrature<Real>(nQuad_));
    }
    else {
      quad = Teuchos::rcp(new Fejer2Quadrature<Real>(nQuad_));
    }
    // quad->test();
    quad->get(pts_,wts_);
    Real sum(0), half(0.5), one(1);
    for (int i = 0; i < nQuad_; ++i) {
      sum += wts_[i];
    }
    for (int i = 0; i < nQuad_; ++i) {
      wts_[i] /= sum;
      pts_[i] = one - alpha_*(half*(pts_[i] + one));
    }
    SpectralRisk<Real>::buildMixedQuantile(pts_,wts_,plusFunction_);
  }

public:

  SuperQuantileQuadrangle( Teuchos::ParameterList &parlist )
    : SpectralRisk<Real>() {
    Teuchos::ParameterList &list
      = parlist.sublist("SOL").sublist("Risk Measure").sublist("Super Quantile Quadrangle");
    // Grab confidence level and quadrature order
    alpha_ = list.get<Real>("Confidence Level");
    nQuad_ = list.get("Number of Quadrature Points",5);
    useGauss_ = list.get("Use Gauss-Legendre Quadrature",true);
    plusFunction_ = Teuchos::rcp(new PlusFunction<Real>(list));
    // Check inputs
    checkInputs();
    initialize();
  }

  SuperQuantileQuadrangle(const Real alpha,
                          const int nQuad,
                          const Teuchos::RCP<PlusFunction<Real> > &pf,
                          const bool useGauss = true)
    : SpectralRisk<Real>(), plusFunction_(pf),
      alpha_(alpha), nQuad_(nQuad), useGauss_(useGauss) {
    // Check inputs
    checkInputs();
    initialize();
  }
};

}

#endif