This file is indexed.

/usr/include/trilinos/ROL_TruncatedCG.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_TRUNCATEDCG_H
#define ROL_TRUNCATEDCG_H

/** \class ROL::TruncatedCG
    \brief Provides interface for truncated CG trust-region subproblem solver.
*/

#include "ROL_TrustRegion.hpp"
#include "ROL_Types.hpp"
#include "ROL_HelperFunctions.hpp"

namespace ROL { 

template<class Real>
class TruncatedCG : public TrustRegion<Real> {
private:
  Teuchos::RCP<Vector<Real> > primalVector_;

  Teuchos::RCP<Vector<Real> > s_;
  Teuchos::RCP<Vector<Real> > g_;
  Teuchos::RCP<Vector<Real> > v_;
  Teuchos::RCP<Vector<Real> > p_;
  Teuchos::RCP<Vector<Real> > Hp_;

  int maxit_;
  Real tol1_;
  Real tol2_;

  Real pRed_;

public:

  // Constructor
  TruncatedCG( Teuchos::ParameterList &parlist ) : TrustRegion<Real>(parlist), pRed_(0) {
    // Unravel Parameter List
    Real em4(1e-4), em2(1e-2);
    maxit_ = parlist.sublist("General").sublist("Krylov").get("Iteration Limit",20);
    tol1_  = parlist.sublist("General").sublist("Krylov").get("Absolute Tolerance",em4);
    tol2_  = parlist.sublist("General").sublist("Krylov").get("Relative Tolerance",em2);
  }

  void initialize( const Vector<Real> &x, const Vector<Real> &s, const Vector<Real> &g) {
    TrustRegion<Real>::initialize(x,s,g);

    primalVector_ = x.clone();

    s_ = s.clone();
    g_ = g.clone();
    v_ = s.clone();
    p_ = s.clone();
    Hp_ = g.clone();
  }

  void run( Vector<Real>           &s,
            Real                   &snorm,
            int                    &iflag,
            int                    &iter,
            const Real              del,
            TrustRegionModel<Real> &model ) {
    Real tol = std::sqrt(ROL_EPSILON<Real>());
    const Real zero(0), one(1), two(2), half(0.5);
    // Initialize step
    s.zero(); s_->zero();
    snorm = zero;
    Real snorm2(0), s1norm2(0);
    // Compute (projected) gradient
    model.dualTransform(*g_,*model.getGradient());
    Real gnorm = g_->norm(), normg = gnorm;
    const Real gtol = std::min(tol1_,tol2_*gnorm);
    // Preconditioned (projected) gradient vector
    model.precond(*v_,*g_,s,tol);
    // Initialize basis vector
    p_->set(*v_); p_->scale(-one);
    Real pnorm2 = v_->dot(g_->dual());
    if ( pnorm2 <= zero ) {
      iflag = 4;
      iter  = 0;
      return;
    }
    // Initialize scalar storage
    iter = 0; iflag = 0;
    Real kappa(0), beta(0), sigma(0), alpha(0), tmp(0), sMp(0);
    Real gv = v_->dot(g_->dual());
    pRed_ = zero;
    // Iterate CG
    for (iter = 0; iter < maxit_; iter++) {
      // Apply Hessian to direction p
      model.hessVec(*Hp_,*p_,s,tol);
      // Check positivity of Hessian
      kappa = p_->dot(Hp_->dual());
      if (kappa <= zero) {
        sigma = (-sMp+sqrt(sMp*sMp+pnorm2*(del*del-snorm2)))/pnorm2;
        s.axpy(sigma,*p_);
        iflag = 2; 
        break;
      }
      // Update step
      alpha = gv/kappa;
      s_->set(s); 
      s_->axpy(alpha,*p_);
      s1norm2 = snorm2 + two*alpha*sMp + alpha*alpha*pnorm2;
      // Check if step exceeds trust region radius
      if (s1norm2 >= del*del) {
        sigma = (-sMp+sqrt(sMp*sMp+pnorm2*(del*del-snorm2)))/pnorm2;
        s.axpy(sigma,*p_);
        iflag = 3; 
        break;
      }
      // Update model predicted reduction
      pRed_ += half*alpha*gv;
      // Set step to temporary step and store norm
      s.set(*s_);
      snorm2 = s1norm2;  
      // Check for convergence
      g_->axpy(alpha,*Hp_);
      normg = g_->norm();
      if (normg < gtol) {
        break;
      }
      // Preconditioned updated (projected) gradient vector
      model.precond(*v_,*g_,s,tol);
      tmp   = gv; 
      gv    = v_->dot(g_->dual());
      beta  = gv/tmp;    
      // Update basis vector
      p_->scale(beta);
      p_->axpy(-one,*v_);
      sMp    = beta*(sMp+alpha*pnorm2);
      pnorm2 = gv + beta*beta*pnorm2; 
    }
    // Update model predicted reduction
    if (iflag > 0) {
      pRed_ += sigma*(gv-half*sigma*kappa);
    }
    // Check iteration count
    if (iter == maxit_) {
      iflag = 1;
    }
    if (iflag != 1) { 
      iter++;
    }
    // Update norm of step and update model predicted reduction
    model.primalTransform(*s_,s);
    s.set(*s_);
    snorm = s.norm();
    TrustRegion<Real>::setPredictedReduction(pRed_);
  }

#if 0
  void truncatedCG_proj( Vector<Real> &s, Real &snorm, Real &del, int &iflag, int &iter, const Vector<Real> &x,
                         const Vector<Real> &grad, const Real &gnorm, ProjectedObjective<Real> &pObj ) {
    Real tol = std::sqrt(ROL_EPSILON<Real>());

    const Real gtol = std::min(tol1_,tol2_*gnorm);

    // Compute Cauchy Point
    Real scnorm = 0.0;
    Teuchos::RCP<Vector<Real> > sc = x.clone();
    cauchypoint(*sc,scnorm,del,iflag,iter,x,grad,gnorm,pObj);
    Teuchos::RCP<Vector<Real> > xc = x.clone();
    xc->set(x);
    xc->plus(*sc);

    // Old and New Step Vectors
    s.set(*sc); 
    snorm = s.norm();
    Real snorm2  = snorm*snorm;
    Teuchos::RCP<Vector<Real> > s1 = x.clone();
    s1->zero();
    Real s1norm2 = 0.0;

    // Gradient Vector
    Teuchos::RCP<Vector<Real> > g = x.clone(); 
    g->set(grad);
    Teuchos::RCP<Vector<Real> > Hs = x.clone();
    pObj.reducedHessVec(*Hs,s,*xc,x,tol);
    g->plus(*Hs);
    Real normg = g->norm();

    // Preconditioned Gradient Vector
    Teuchos::RCP<Vector<Real> > v  = x.clone();
    pObj.reducedPrecond(*v,*g,*xc,x,tol);

    // Basis Vector
    Teuchos::RCP<Vector<Real> > p = x.clone(); 
    p->set(*v); 
    p->scale(-1.0);
    Real pnorm2 = v->dot(*g);

    // Hessian Times Basis Vector
    Teuchos::RCP<Vector<Real> > Hp = x.clone();

    iter        = 0; 
    iflag       = 0; 
    Real kappa  = 0.0;
    Real beta   = 0.0; 
    Real sigma  = 0.0; 
    Real alpha  = 0.0; 
    Real tmp    = 0.0;
    Real gv     = v->dot(*g);
    Real sMp    = 0.0;
    pRed_ = 0.0;

    for (iter = 0; iter < maxit_; iter++) {
      pObj.reducedHessVec(*Hp,*p,*xc,x,tol);

      kappa = p->dot(*Hp);
      if (kappa <= 0) {
        sigma = (-sMp+sqrt(sMp*sMp+pnorm2*(del*del-snorm2)))/pnorm2;
        s.axpy(sigma,*p);
        iflag = 2; 
        break;
      }

      alpha = gv/kappa;
      s1->set(s); 
      s1->axpy(alpha,*p);
      s1norm2 = snorm2 + 2.0*alpha*sMp + alpha*alpha*pnorm2;

      if (s1norm2 >= del*del) {
        sigma = (-sMp+sqrt(sMp*sMp+pnorm2*(del*del-snorm2)))/pnorm2;
        s.axpy(sigma,*p);
        iflag = 3; 
        break;
      }

      pRed_ += 0.5*alpha*gv;

      s.set(*s1);
      snorm2 = s1norm2;  

      g->axpy(alpha,*Hp);
      normg = g->norm();
      if (normg < gtol) {
        break;
      }

      pObj.reducedPrecond(*v,*g,*xc,x,tol);
      tmp   = gv; 
      gv    = v->dot(*g);
      beta  = gv/tmp;    

      p->scale(beta);
      p->axpy(-1.0,*v);
      sMp    = beta*(sMp+alpha*pnorm2);
      pnorm2 = gv + beta*beta*pnorm2; 
    }
    if (iflag > 0) {
      pRed_ += sigma*(gv-0.5*sigma*kappa);
    }

    if (iter == maxit_) {
      iflag = 1;
    }
    if (iflag != 1) { 
      iter++;
    }

    snorm = s.norm();
  }
#endif
};

}

#endif