/usr/include/trilinos/ROL_TrustRegionStep.hpp is in libtrilinos-rol-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 | // @HEADER
// ************************************************************************
//
// Rapid Optimization Library (ROL) Package
// Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
// Drew Kouri (dpkouri@sandia.gov) and
// Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef ROL_TRUSTREGIONSTEP_H
#define ROL_TRUSTREGIONSTEP_H
#include "ROL_Step.hpp"
#include "ROL_Types.hpp"
#include "ROL_Secant.hpp"
#include "ROL_TrustRegion.hpp"
#include <sstream>
#include <iomanip>
/** @ingroup step_group
\class ROL::TrustRegionStep
\brief Provides the interface to compute optimization steps
with trust regions.
Suppose \f$\mathcal{X}\f$ is a Hilbert space of
functions mapping \f$\Xi\f$ to \f$\mathbb{R}\f$. For example,
\f$\Xi\subset\mathbb{R}^n\f$ and \f$\mathcal{X}=L^2(\Xi)\f$ or
\f$\Xi = \{1,\ldots,n\}\f$ and \f$\mathcal{X}=\mathbb{R}^n\f$. We
assume \f$f:\mathcal{X}\to\mathbb{R}\f$ is twice-continuously Fréchet
differentiable and \f$a,\,b\in\mathcal{X}\f$ with \f$a\le b\f$ almost
everywhere in \f$\Xi\f$. Note that these trust-region algorithms will also work
with secant approximations of the Hessian.
This step applies to unconstrained and bound constrained optimization problems,
\f[
\min_x\quad f(x) \qquad\text{and}\qquad \min_x\quad f(x)\quad\text{s.t.}\quad a\le x\le b,
\f]
respectively.
For unconstrained problems, given the \f$k\f$-th iterate \f$x_k\f$ the trial step
\f$s_k\f$ is computed by approximately solving the trust-region subproblem
\f[
\min_{s} \frac{1}{2}\langle B_k s, s\rangle_{\mathcal{X}} + \langle g_k,s\rangle_{\mathcal{X}}
\quad\text{s.t.}\quad \|s\|_{\mathcal{X}} \le \Delta_k
\f]
where \f$B_k\in L(\mathcal{X},\mathcal{X})\f$, \f$g_k\approx\nabla f(x_k)\f$, and \f$\Delta_k > 0\f$.
The approximate minimizer \f$s_k\f$ must satisfy the fraction of Cauchy decrease condition
\f[
-\frac{1}{2}\langle B_k s, s\rangle_{\mathcal{X}} - \langle g_k,s\rangle_{\mathcal{X}}
\ge \kappa_0 \|g_k\|_{\mathcal{X}}
\min\left\{\,\Delta_k,\,
\frac{\|g_k\|_{\mathcal{X}}}{1+\|B_k\|_{L(\mathcal{X},\mathcal{X}})}\,\right\}
\f]
for some \f$\kappa_0>0\f$ independent of \f$k\f$.
ROL's trust-region algorithm allows for both inexact objective function and gradient evaluation.
The user must ensure that the inexact objective function, \f$f_k\f$ satisfies
\f[
|(f(x_k+s_k)-f_k(x_k+s_k)) - (f(x_k)-f_k(x_k))| \le
\eta_1 \min\{\,-\frac{1}{2}\langle B_k s, s\rangle_{\mathcal{X}} - \langle g_k,s\rangle_{\mathcal{X}},
\,r_k\,\}
\f]
where \f$\eta_1\f$ is the step acceptance threshold and \f$r_k\f$ is a user-defined forcing sequence of
positive numbers converging to zero. The inexact gradient, \f$g_k\f$, must satisfy
\f[
\|g_k-\nabla J(x_k)\|_{\mathcal{X}} \le \kappa_1\min\{\,\|g_k\|_{\mathcal{X}},\,\Delta_k\,\}
\f]
where \f$\kappa_1 > 0\f$ is independent of \f$k\f$.
For bound constrained problems, ROL employs projected Newton-type methods.
For these methods, ROL requires the notion of an active set of an iterate \f$x_k\f$,
\f[
\mathcal{A}_k = \{\, \xi\in\Xi\,:\,x_k(\xi) = a(\xi)\,\}\cap
\{\, \xi\in\Xi\,:\,x_k(\xi) = b(\xi)\,\}.
\f]
Given \f$\mathcal{A}_k\f$ and a gradient approximation \f$g_k\f$, we define the binding set as
\f[
\mathcal{B}_k = \{\, \xi\in\Xi\,:\,x_k(\xi) = a(\xi) \;\text{and}\; -g_k(\xi) < 0 \,\}\cap
\{\, \xi\in\Xi\,:\,x_k(\xi) = b(\xi) \;\text{and}\; -g_k(\xi) > 0 \,\}.
\f]
The binding set contains the values of \f$\xi\in\Xi\f$ such that if \f$x_k(\xi)\f$ is on a
bound, then \f$(x_k+s_k)(\xi)\f$ will violate bound. Using these definitions, ROL
prunes the variables in the binding set and runs a standard trust-region subproblem solver on the
free variables. ROL then must perform a projected search to ensure the fraction of Cauchy decrease
condition is satisfied.
TrustRegionStep implements a number of algorithms for both bound constrained and unconstrained
optimization. These algorithms are: Cauchy Point, Dogleg, Double Dogleg, and Truncated CG.
Each of these methods can be run using a secant approximation of the Hessian.
These methods are chosen through the ETrustRegion enum.
*/
namespace ROL {
template <class Real>
class TrustRegionStep : public Step<Real> {
private:
// ADDITIONAL VECTOR STORAGE
Teuchos::RCP<Vector<Real> > xnew_; ///< Container for updated iteration vector.
Teuchos::RCP<Vector<Real> > xold_; ///< Container for previous iteration vector.
Teuchos::RCP<Vector<Real> > gp_; ///< Container for previous gradient vector.
// TRUST REGION INFORMATION
Teuchos::RCP<TrustRegion<Real> > trustRegion_; ///< Container for trust-region solver object.
Teuchos::RCP<TrustRegionModel<Real> > model_; ///< Container for trust-region model.
ETrustRegion etr_; ///< Trust-region subproblem solver type.
ETrustRegionModel TRmodel_; ///< Trust-region subproblem model type.
Real delMax_; ///< Maximum trust-region radius.
ETrustRegionFlag TRflag_; ///< Trust-region exit flag.
int SPflag_; ///< Subproblem solver termination flag.
int SPiter_; ///< Subproblem solver iteration count.
bool bndActive_; ///< Flag whether bound is activated.
// SECANT INFORMATION
Teuchos::RCP<Secant<Real> > secant_; ///< Container for secant approximation.
ESecant esec_; ///< Secant type.
bool useSecantHessVec_; ///< Flag whether to use a secant Hessian.
bool useSecantPrecond_; ///< Flag whether to use a secant preconditioner.
// BOUND CONSTRAINED PARAMETERS
Real scaleEps_; ///< Scaling for epsilon-active sets.
bool useProjectedGrad_; ///< Flag whether to use the projected gradient criticality measure.
// POST SMOOTHING PARAMETERS
Real alpha_init_; ///< Initial line-search parameter for projected methods.
int max_fval_; ///< Maximum function evaluations in line-search for projected methods.
Real mu_; ///< Post-Smoothing tolerance for projected methods.
Real beta_; ///< Post-Smoothing rate for projected methods.
// COLEMAN-LI PARAMETERS
Real stepBackMax_;
Real stepBackScale_;
bool singleReflect_;
// INEXACT COMPUTATION PARAMETERS
std::vector<bool> useInexact_; ///< Flags for inexact (0) objective function, (1) gradient, (2) Hessian.
Real scale0_; ///< Scale for inexact gradient computation.
Real scale1_; ///< Scale for inexact gradient computation.
// VERBOSITY SETTING
int verbosity_; ///< Print additional information to screen if > 0.
/** \brief Parse input ParameterList.
This function sets trust region specific parameters specified in the user
supplied ParameterList.
@param[in] parlist is the user-supplied ParameterList.
*/
void parseParameterList(Teuchos::ParameterList &parlist) {
Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
// Trust-Region Parameters
Teuchos::ParameterList &slist = parlist.sublist("Step");
Teuchos::ParameterList &list = slist.sublist("Trust Region");
step_state->searchSize = list.get("Initial Radius", static_cast<Real>(-1));
delMax_ = list.get("Maximum Radius", static_cast<Real>(1.e8));
// Inexactness Information
Teuchos::ParameterList &glist = parlist.sublist("General");
useInexact_.clear();
useInexact_.push_back(glist.get("Inexact Objective Function", false));
useInexact_.push_back(glist.get("Inexact Gradient", false));
useInexact_.push_back(glist.get("Inexact Hessian-Times-A-Vector", false));
// Trust-Region Inexactness Parameters
Teuchos::ParameterList &ilist = list.sublist("Inexact").sublist("Gradient");
scale0_ = ilist.get("Tolerance Scaling", static_cast<Real>(0.1));
scale1_ = ilist.get("Relative Tolerance", static_cast<Real>(2));
// Initialize Trust Region Subproblem Solver Object
etr_ = StringToETrustRegion(list.get("Subproblem Solver", "Dogleg"));
TRmodel_ = StringToETrustRegionModel(list.get("Subproblem Model", "Kelley-Sachs"));
useProjectedGrad_ = glist.get("Projected Gradient Criticality Measure", false);
trustRegion_ = TrustRegionFactory<Real>(parlist);
// Scale for epsilon active sets
scaleEps_ = glist.get("Scale for Epsilon Active Sets", static_cast<Real>(1));
verbosity_ = glist.get("Print Verbosity", 0);
// Post-smoothing parameters
max_fval_ = list.sublist("Post-Smoothing").get("Function Evaluation Limit", 20);
alpha_init_ = list.sublist("Post-Smoothing").get("Initial Step Size", static_cast<Real>(1));
mu_ = list.sublist("Post-Smoothing").get("Tolerance", static_cast<Real>(0.9999));
beta_ = list.sublist("Post-Smoothing").get("Rate", static_cast<Real>(0.01));
// Coleman-Li parameters
stepBackMax_ = list.sublist("Coleman-Li").get("Maximum Step Back", static_cast<Real>(0.9999));
stepBackScale_ = list.sublist("Coleman-Li").get("Maximum Step Scale", static_cast<Real>(1));
singleReflect_ = list.sublist("Coleman-Li").get("Single Reflection", true);
}
/** \brief Update gradient to iteratively satisfy inexactness condition.
This function attempts to ensure that the inexact gradient condition,
\f[
\|g_k-\nabla J(x_k)\|_{\mathcal{X}} \le \kappa_1\min\{\,\|g_k\|_{\mathcal{X}},\,\Delta_k\,\},
\f]
is satisfied. This function works under the assumption that the gradient function returns
a gradient approximation which satisfies the error tolerance prescribed by the tol input
parameter.
@param[in] x is the current optimization variable.
@param[in] obj is the objective function.
@param[in] bnd is the bound constraint.
@param[in,out] algo_state is the algorithm state.
*/
void updateGradient( Vector<Real> &x, Objective<Real> &obj, BoundConstraint<Real> &bnd,
AlgorithmState<Real> &algo_state ) {
Teuchos::RCP<StepState<Real> > state = Step<Real>::getState();
if ( useInexact_[1] ) {
const Real one(1);
//const Real oem2(1.e-2), oe4(1.e4);
//Real c = scale0_*std::max(oem2,std::min(one,oe4*algo_state.gnorm));
//Real gtol1 = c*std::min(algo_state.gnorm,state->searchSize);
//Real gtol0 = scale1_*gtol1 + one;
//while ( gtol0 > gtol1*scale1_ ) {
// obj.gradient(*(state->gradientVec),x,gtol1);
// algo_state.gnorm = computeCriticalityMeasure(*(state->gradientVec),x,bnd);
// gtol0 = gtol1;
// c = scale0_*std::max(oem2,std::min(one,oe4*algo_state.gnorm));
// gtol1 = c*std::min(algo_state.gnorm,state->searchSize);
//}
//algo_state.ngrad++;
Real gtol1 = scale0_*std::min(algo_state.gnorm,state->searchSize);
Real gtol0 = gtol1 + one;
while ( gtol0 > gtol1 ) {
obj.gradient(*(state->gradientVec),x,gtol1);
algo_state.gnorm = computeCriticalityMeasure(*(state->gradientVec),x,bnd);
gtol0 = gtol1;
gtol1 = scale0_*std::min(algo_state.gnorm,state->searchSize);
}
algo_state.ngrad++;
}
else {
Real gtol = std::sqrt(ROL_EPSILON<Real>());
obj.gradient(*(state->gradientVec),x,gtol);
algo_state.ngrad++;
algo_state.gnorm = computeCriticalityMeasure(*(state->gradientVec),x,bnd);
}
}
/** \brief Compute the criticality measure.
This function computes either the norm of the gradient projected onto the tangent cone or
the norm of \f$x_k - P_{[a,b]}(x_k-g_k)\f$.
@param[in] g is the current gradient.
@param[in] x is the current iterate.
@param[in] bnd is the bound constraint.
*/
Real computeCriticalityMeasure( const Vector<Real> &g, const Vector<Real> &x, BoundConstraint<Real> &bnd ) {
if ( bnd.isActivated() ) {
if ( useProjectedGrad_ ) {
gp_->set(g);
bnd.computeProjectedGradient( *gp_, x );
return gp_->norm();
}
else {
Real one(1);
xnew_->set(x);
xnew_->axpy(-one,g.dual());
bnd.project(*xnew_);
xnew_->axpy(-one,x);
return xnew_->norm();
}
}
else {
return g.norm();
}
}
public:
using Step<Real>::initialize;
using Step<Real>::compute;
using Step<Real>::update;
virtual ~TrustRegionStep() {}
/** \brief Constructor.
Standard constructor to build a TrustRegionStep object. Algorithmic
specifications are passed in through a Teuchos::ParameterList.
@param[in] parlist is a parameter list containing algorithmic specifications
*/
TrustRegionStep( Teuchos::ParameterList & parlist )
: Step<Real>(),
xnew_(Teuchos::null), xold_(Teuchos::null), gp_(Teuchos::null),
trustRegion_(Teuchos::null), model_(Teuchos::null),
etr_(TRUSTREGION_DOGLEG), TRmodel_(TRUSTREGION_MODEL_KELLEYSACHS),
delMax_(1e8), TRflag_(TRUSTREGION_FLAG_SUCCESS),
SPflag_(0), SPiter_(0), bndActive_(false),
secant_(Teuchos::null), esec_(SECANT_LBFGS),
useSecantHessVec_(false), useSecantPrecond_(false),
scaleEps_(1), useProjectedGrad_(false),
alpha_init_(1), max_fval_(20), mu_(0.9999), beta_(0.01),
stepBackMax_(0.9999), stepBackScale_(1), singleReflect_(true),
scale0_(1), scale1_(1),
verbosity_(0) {
// Parse input parameterlist
parseParameterList(parlist);
// Create secant object
Teuchos::ParameterList &glist = parlist.sublist("General");
esec_ = StringToESecant(glist.sublist("Secant").get("Type","Limited-Memory BFGS"));
useSecantPrecond_ = glist.sublist("Secant").get("Use as Preconditioner", false);
useSecantHessVec_ = glist.sublist("Secant").get("Use as Hessian", false);
secant_ = SecantFactory<Real>(parlist);
}
/** \brief Constructor.
Constructor to build a TrustRegionStep object with a user-defined
secant object. Algorithmic specifications are passed in through
a Teuchos::ParameterList.
@param[in] secant is a user-defined secant object
@param[in] parlist is a parameter list containing algorithmic specifications
*/
TrustRegionStep( Teuchos::RCP<Secant<Real> > &secant, Teuchos::ParameterList &parlist )
: Step<Real>(),
xnew_(Teuchos::null), xold_(Teuchos::null), gp_(Teuchos::null),
trustRegion_(Teuchos::null), model_(Teuchos::null),
etr_(TRUSTREGION_DOGLEG), TRmodel_(TRUSTREGION_MODEL_KELLEYSACHS),
delMax_(1e8), TRflag_(TRUSTREGION_FLAG_SUCCESS),
SPflag_(0), SPiter_(0), bndActive_(false),
secant_(Teuchos::null), esec_(SECANT_LBFGS),
useSecantHessVec_(false), useSecantPrecond_(false),
scaleEps_(1), useProjectedGrad_(false),
alpha_init_(1), max_fval_(20), mu_(0.9999), beta_(0.01),
stepBackMax_(0.9999), stepBackScale_(1), singleReflect_(true),
scale0_(1), scale1_(1),
verbosity_(0) {
// Parse input parameterlist
parseParameterList(parlist);
// Create secant object
Teuchos::ParameterList &glist = parlist.sublist("General");
useSecantPrecond_ = glist.sublist("Secant").get("Use as Preconditioner", false);
useSecantHessVec_ = glist.sublist("Secant").get("Use as Hessian", false);
if ( secant_ == Teuchos::null ) {
Teuchos::ParameterList Slist;
Slist.sublist("General").sublist("Secant").set("Type","Limited-Memory BFGS");
Slist.sublist("General").sublist("Secant").set("Maximum Storage",10);
secant_ = SecantFactory<Real>(Slist);
}
}
/** \brief Initialize step.
This function initializes the information necessary to run the trust-region algorithm.
@param[in] x is the initial guess for the optimization vector.
@param[in] obj is the objective function.
@param[in] bnd is the bound constraint.
@param[in] algo_state is the algorithm state.
*/
void initialize( Vector<Real> &x, const Vector<Real> &s, const Vector<Real> &g,
Objective<Real> &obj, BoundConstraint<Real> &bnd,
AlgorithmState<Real> &algo_state ) {
Real p1(0.1), oe10(1.e10), zero(0), one(1), half(0.5), three(3), two(2), six(6);
Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
bndActive_ = bnd.isActivated();
trustRegion_->initialize(x,s,g);
Real htol = std::sqrt(ROL_EPSILON<Real>());
Real ftol = p1*ROL_OVERFLOW<Real>();
step_state->descentVec = s.clone();
step_state->gradientVec = g.clone();
if ( bnd.isActivated() ) {
// Make initial guess feasible
bnd.project(x);
xnew_ = x.clone();
xold_ = x.clone();
// Make initial guess strictly feasible
if ( TRmodel_ == TRUSTREGION_MODEL_COLEMANLI ) {
xold_->set(*bnd.getUpperVectorRCP()); // u
xold_->axpy(-one,*bnd.getLowerVectorRCP()); // u - l
Real minDiff = static_cast<Real>(1e-1)
* std::min(one, half * xold_->reduce(Elementwise::ReductionMin<Real>()));
class LowerFeasible : public Elementwise::BinaryFunction<Real> {
private:
const Real eps_;
public:
LowerFeasible(const Real eps) : eps_(eps) {}
Real apply( const Real &x, const Real &y ) const {
const Real tol = static_cast<Real>(100)*ROL_EPSILON<Real>();
return (x < y+tol) ? y+eps_ : x;
}
};
x.applyBinary(LowerFeasible(minDiff), *bnd.getLowerVectorRCP());
class UpperFeasible : public Elementwise::BinaryFunction<Real> {
private:
const Real eps_;
public:
UpperFeasible(const Real eps) : eps_(eps) {}
Real apply( const Real &x, const Real &y ) const {
const Real tol = static_cast<Real>(100)*ROL_EPSILON<Real>();
return (x > y-tol) ? y-eps_ : x;
}
};
x.applyBinary(UpperFeasible(minDiff), *bnd.getUpperVectorRCP());
}
}
gp_ = g.clone();
// Update approximate gradient and approximate objective function.
obj.update(x,true,algo_state.iter);
updateGradient(x,obj,bnd,algo_state);
algo_state.snorm = oe10;
algo_state.value = obj.value(x,ftol);
algo_state.nfval++;
// Try to apply inverse Hessian
if ( !useSecantHessVec_ &&
(etr_ == TRUSTREGION_DOGLEG || etr_ == TRUSTREGION_DOUBLEDOGLEG) ) {
try {
Teuchos::RCP<Vector<Real> > v = g.clone();
Teuchos::RCP<Vector<Real> > hv = x.clone();
obj.invHessVec(*hv,*v,x,htol);
}
catch (std::exception &e) {
useSecantHessVec_ = true;
}
}
// Evaluate Objective Function at Cauchy Point
if ( step_state->searchSize <= zero ) {
Teuchos::RCP<Vector<Real> > Bg = g.clone();
if ( useSecantHessVec_ ) {
secant_->applyB(*Bg,(step_state->gradientVec)->dual());
}
else {
obj.hessVec(*Bg,(step_state->gradientVec)->dual(),x,htol);
}
Real gBg = Bg->dot(*(step_state->gradientVec));
Real alpha = one;
if ( gBg > ROL_EPSILON<Real>() ) {
alpha = algo_state.gnorm*algo_state.gnorm/gBg;
}
// Evaluate the objective function at the Cauchy point
Teuchos::RCP<Vector<Real> > cp = s.clone();
cp->set((step_state->gradientVec)->dual());
cp->scale(-alpha);
Teuchos::RCP<Vector<Real> > xcp = x.clone();
xcp->set(x);
xcp->plus(*cp);
if ( bnd.isActivated() ) {
bnd.project(*xcp);
}
obj.update(*xcp);
Real fnew = obj.value(*xcp,ftol); // MUST DO SOMETHING HERE WITH FTOL
algo_state.nfval++;
// Perform cubic interpolation to determine initial trust region radius
Real gs = cp->dot((step_state->gradientVec)->dual());
Real a = fnew - algo_state.value - gs - half*alpha*alpha*gBg;
if ( std::abs(a) < ROL_EPSILON<Real>() ) {
// a = 0 implies the objective is quadratic in the negative gradient direction
step_state->searchSize = std::min(alpha*algo_state.gnorm,delMax_);
}
else {
Real b = half*alpha*alpha*gBg;
Real c = gs;
if ( b*b-three*a*c > ROL_EPSILON<Real>() ) {
// There is at least one critical point
Real t1 = (-b-std::sqrt(b*b-three*a*c))/(three*a);
Real t2 = (-b+std::sqrt(b*b-three*a*c))/(three*a);
if ( six*a*t1 + two*b > zero ) {
// t1 is the minimizer
step_state->searchSize = std::min(t1*alpha*algo_state.gnorm,delMax_);
}
else {
// t2 is the minimizer
step_state->searchSize = std::min(t2*alpha*algo_state.gnorm,delMax_);
}
}
else {
step_state->searchSize = std::min(alpha*algo_state.gnorm,delMax_);
}
}
}
}
/** \brief Compute step.
Computes a trial step, \f$s_k\f$ by solving the trust-region subproblem.
The trust-region subproblem solver is defined by the enum ETrustRegion.
@param[out] s is the computed trial step
@param[in] x is the current iterate
@param[in] obj is the objective function
@param[in] bnd are the bound constraints
@param[in] algo_state contains the current state of the algorithm
*/
void compute( Vector<Real> &s, const Vector<Real> &x, Objective<Real> &obj, BoundConstraint<Real> &bnd,
AlgorithmState<Real> &algo_state ) {
// Get step state
Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
// Build trust-region model
if (bnd.isActivated()) {
if ( TRmodel_ == TRUSTREGION_MODEL_KELLEYSACHS ) {
// Real eps = scaleEps_*algo_state.gnorm;
Real eps = scaleEps_ * std::min(std::pow(algo_state.gnorm,static_cast<Real>(0.75)),
static_cast<Real>(0.01));
model_ = Teuchos::rcp(new ROL::KelleySachsModel<Real>(obj,
bnd,
x,
*(step_state->gradientVec),
eps,
secant_,
useSecantPrecond_,
useSecantHessVec_));
}
else if ( TRmodel_ == TRUSTREGION_MODEL_COLEMANLI ) {
model_ = Teuchos::rcp(new ROL::ColemanLiModel<Real>(obj,
bnd,
x,
*(step_state->gradientVec),
secant_,
useSecantPrecond_,
useSecantHessVec_,
step_state->searchSize,
stepBackMax_,
stepBackScale_,
singleReflect_));
}
else {
TEUCHOS_TEST_FOR_EXCEPTION( true, std::invalid_argument,
">>> ERROR (ROL::TrustRegionStep): Invalid trust-region model!");
}
}
else {
model_ = Teuchos::rcp(new ROL::TrustRegionModel<Real>(obj,
x,
*(step_state->gradientVec),
secant_,
useSecantPrecond_,
useSecantHessVec_));
}
// Minimize trust-region model over trust-region constraint
SPflag_ = 0; SPiter_ = 0;
trustRegion_->run(s,algo_state.snorm,SPflag_,SPiter_,step_state->searchSize,*model_);
}
/** \brief Update step, if successful.
Given a trial step, \f$s_k\f$, this function updates \f$x_{k+1}=x_k+s_k\f$.
This function also updates the secant approximation.
@param[in,out] x is the updated iterate
@param[in] s is the computed trial step
@param[in] obj is the objective function
@param[in] bnd are the bound constraints
@param[in] algo_state contains the current state of the algorithm
*/
void update( Vector<Real> &x,
const Vector<Real> &s,
Objective<Real> &obj,
BoundConstraint<Real> &bnd,
AlgorithmState<Real> &algo_state ) {
// Get step state
Teuchos::RCP<StepState<Real> > state = Step<Real>::getState();
// Store previous step for constraint computations
if ( bnd.isActivated() ) {
xold_->set(x);
}
// Update trust-region information;
// Performs a hard update on the objective function
TRflag_ = TRUSTREGION_FLAG_SUCCESS;
state->nfval = 0;
state->ngrad = 0;
Real fold = algo_state.value;
Real fnew(0);
algo_state.iter++;
trustRegion_->update(x,fnew,state->searchSize,state->nfval,state->ngrad,TRflag_,
s,algo_state.snorm,fold,*(state->gradientVec),algo_state.iter,
obj,bnd,*model_);
algo_state.nfval += state->nfval;
algo_state.ngrad += state->ngrad;
// If step is accepted ...
// Compute new gradient and update secant storage
if ( TRflag_ == TRUSTREGION_FLAG_SUCCESS ||
TRflag_ == TRUSTREGION_FLAG_POSPREDNEG ) {
// Perform line search (smoothing) to ensure decrease
if ( bnd.isActivated() && TRmodel_ == TRUSTREGION_MODEL_KELLEYSACHS ) {
Real tol = std::sqrt(ROL_EPSILON<Real>());
// Compute new gradient
obj.gradient(*gp_,x,tol); // MUST DO SOMETHING HERE WITH TOL
algo_state.ngrad++;
// Compute smoothed step
Real alpha(1);
xnew_->set(x);
xnew_->axpy(-alpha*alpha_init_,gp_->dual());
bnd.project(*xnew_);
// Compute new objective value
obj.update(*xnew_,true,algo_state.iter);
Real ftmp = obj.value(*xnew_,tol); // MUST DO SOMETHING HERE WITH TOL
algo_state.nfval++;
// Perform smoothing
int cnt = 0;
alpha = static_cast<Real>(1)/alpha_init_;
while ( (fnew-ftmp) <= mu_*(fnew-fold) ) {
xnew_->set(x);
xnew_->axpy(-alpha*alpha_init_,gp_->dual());
bnd.project(*xnew_);
obj.update(*xnew_,true,algo_state.iter);
ftmp = obj.value(*xnew_,tol); // MUST DO SOMETHING HERE WITH TOL
algo_state.nfval++;
if ( cnt >= max_fval_ ) {
break;
}
alpha *= beta_;
cnt++;
}
// Store objective function and iteration information
fnew = ftmp;
x.set(*xnew_);
}
// Store previous gradient for secant update
if ( useSecantHessVec_ || useSecantPrecond_ ) {
gp_->set(*(state->gradientVec));
}
// Update objective function and approximate model
updateGradient(x,obj,bnd,algo_state);
// Update secant information
if ( useSecantHessVec_ || useSecantPrecond_ ) {
if ( bnd.isActivated() ) { // Compute new constrained step
xnew_->set(x);
xnew_->axpy(-static_cast<Real>(1),*xold_);
secant_->updateStorage(x,*(state->gradientVec),*gp_,*xnew_,algo_state.snorm,algo_state.iter+1);
}
else {
secant_->updateStorage(x,*(state->gradientVec),*gp_,s,algo_state.snorm,algo_state.iter+1);
}
}
// Update algorithm state
(algo_state.iterateVec)->set(x);
}
else {
if ( useInexact_[1] ) {
// Update objective function and approximate model
updateGradient(x,obj,bnd,algo_state);
}
}
// Update algorithm state
algo_state.value = fnew;
}
/** \brief Print iterate header.
This function produces a string containing header information.
*/
std::string printHeader( void ) const {
std::stringstream hist;
if(verbosity_>0) {
hist << std::string(114,'-') << "\n";
hist << "Trust-Region status output definitions\n\n";
hist << " iter - Number of iterates (steps taken) \n";
hist << " value - Objective function value \n";
hist << " gnorm - Norm of the gradient\n";
hist << " snorm - Norm of the step (update to optimization vector)\n";
hist << " delta - Trust-Region radius\n";
hist << " #fval - Number of times the objective function was evaluated\n";
hist << " #grad - Number of times the gradient was computed\n";
hist << "\n";
hist << " tr_flag - Trust-Region flag" << "\n";
for( int flag = TRUSTREGION_FLAG_SUCCESS; flag != TRUSTREGION_FLAG_UNDEFINED; ++flag ) {
hist << " " << NumberToString(flag) << " - "
<< ETrustRegionFlagToString(static_cast<ETrustRegionFlag>(flag)) << "\n";
}
if( etr_ == TRUSTREGION_TRUNCATEDCG ) {
hist << "\n";
hist << " iterCG - Number of Truncated CG iterations\n\n";
hist << " flagGC - Trust-Region Truncated CG flag" << "\n";
for( int flag = CG_FLAG_SUCCESS; flag != CG_FLAG_UNDEFINED; ++flag ) {
hist << " " << NumberToString(flag) << " - "
<< ECGFlagToString(static_cast<ECGFlag>(flag)) << "\n";
}
}
hist << std::string(114,'-') << "\n";
}
hist << " ";
hist << std::setw(6) << std::left << "iter";
hist << std::setw(15) << std::left << "value";
hist << std::setw(15) << std::left << "gnorm";
hist << std::setw(15) << std::left << "snorm";
hist << std::setw(15) << std::left << "delta";
hist << std::setw(10) << std::left << "#fval";
hist << std::setw(10) << std::left << "#grad";
hist << std::setw(10) << std::left << "tr_flag";
if ( etr_ == TRUSTREGION_TRUNCATEDCG ) {
hist << std::setw(10) << std::left << "iterCG";
hist << std::setw(10) << std::left << "flagCG";
}
hist << "\n";
return hist.str();
}
/** \brief Print step name.
This function produces a string containing the algorithmic step information.
*/
std::string printName( void ) const {
std::stringstream hist;
hist << "\n" << ETrustRegionToString(etr_) << " Trust-Region Solver";
if ( useSecantPrecond_ || useSecantHessVec_ ) {
if ( useSecantPrecond_ && !useSecantHessVec_ ) {
hist << " with " << ESecantToString(esec_) << " Preconditioning\n";
}
else if ( !useSecantPrecond_ && useSecantHessVec_ ) {
hist << " with " << ESecantToString(esec_) << " Hessian Approximation\n";
}
else {
hist << " with " << ESecantToString(esec_) << " Preconditioning and Hessian Approximation\n";
}
}
else {
hist << "\n";
}
if ( bndActive_ ) {
hist << "Trust-Region Model: " << ETrustRegionModelToString(TRmodel_) << "\n";
}
return hist.str();
}
/** \brief Print iterate status.
This function prints the iteration status.
@param[in] algo_state is the current state of the algorithm
@param[in] printHeader if ste to true will print the header at each iteration
*/
std::string print( AlgorithmState<Real> & algo_state, bool print_header = false ) const {
const Teuchos::RCP<const StepState<Real> >& step_state = Step<Real>::getStepState();
std::stringstream hist;
hist << std::scientific << std::setprecision(6);
if ( algo_state.iter == 0 ) {
hist << printName();
}
if ( print_header ) {
hist << printHeader();
}
if ( algo_state.iter == 0 ) {
hist << " ";
hist << std::setw(6) << std::left << algo_state.iter;
hist << std::setw(15) << std::left << algo_state.value;
hist << std::setw(15) << std::left << algo_state.gnorm;
hist << std::setw(15) << std::left << " ";
hist << std::setw(15) << std::left << step_state->searchSize;
hist << "\n";
}
else {
hist << " ";
hist << std::setw(6) << std::left << algo_state.iter;
hist << std::setw(15) << std::left << algo_state.value;
hist << std::setw(15) << std::left << algo_state.gnorm;
hist << std::setw(15) << std::left << algo_state.snorm;
hist << std::setw(15) << std::left << step_state->searchSize;
hist << std::setw(10) << std::left << algo_state.nfval;
hist << std::setw(10) << std::left << algo_state.ngrad;
hist << std::setw(10) << std::left << TRflag_;
if ( etr_ == TRUSTREGION_TRUNCATEDCG ) {
hist << std::setw(10) << std::left << SPiter_;
hist << std::setw(10) << std::left << SPflag_;
}
hist << "\n";
}
return hist.str();
}
}; // class Step
} // namespace ROL
#endif
|