This file is indexed.

/usr/include/trilinos/ROL_TrustRegionStep.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_TRUSTREGIONSTEP_H
#define ROL_TRUSTREGIONSTEP_H

#include "ROL_Step.hpp"
#include "ROL_Types.hpp"
#include "ROL_Secant.hpp"
#include "ROL_TrustRegion.hpp"
#include <sstream>
#include <iomanip>

/** @ingroup step_group
    \class ROL::TrustRegionStep
    \brief Provides the interface to compute optimization steps
           with trust regions.

    Suppose \f$\mathcal{X}\f$ is a Hilbert space of 
    functions mapping \f$\Xi\f$ to \f$\mathbb{R}\f$.  For example, 
    \f$\Xi\subset\mathbb{R}^n\f$ and \f$\mathcal{X}=L^2(\Xi)\f$ or 
    \f$\Xi = \{1,\ldots,n\}\f$ and \f$\mathcal{X}=\mathbb{R}^n\f$. We 
    assume \f$f:\mathcal{X}\to\mathbb{R}\f$ is twice-continuously Fr&eacute;chet 
    differentiable and \f$a,\,b\in\mathcal{X}\f$ with \f$a\le b\f$ almost 
    everywhere in \f$\Xi\f$.  Note that these trust-region algorithms will also work 
    with secant approximations of the Hessian. 
    This step applies to unconstrained and bound constrained optimization problems,
    \f[
        \min_x\quad f(x) \qquad\text{and}\qquad \min_x\quad f(x)\quad\text{s.t.}\quad a\le x\le b,
    \f]
    respectively.  

    For unconstrained problems, given the \f$k\f$-th iterate \f$x_k\f$ the trial step
    \f$s_k\f$ is computed by approximately solving the trust-region subproblem 
    \f[
       \min_{s} \frac{1}{2}\langle B_k s, s\rangle_{\mathcal{X}} + \langle g_k,s\rangle_{\mathcal{X}}
           \quad\text{s.t.}\quad \|s\|_{\mathcal{X}} \le \Delta_k
    \f]
    where \f$B_k\in L(\mathcal{X},\mathcal{X})\f$, \f$g_k\approx\nabla f(x_k)\f$, and \f$\Delta_k > 0\f$.
    The approximate minimizer \f$s_k\f$ must satisfy the fraction of Cauchy decrease condition
    \f[
       -\frac{1}{2}\langle B_k s, s\rangle_{\mathcal{X}} - \langle g_k,s\rangle_{\mathcal{X}}
          \ge \kappa_0 \|g_k\|_{\mathcal{X}}
          \min\left\{\,\Delta_k,\,
          \frac{\|g_k\|_{\mathcal{X}}}{1+\|B_k\|_{L(\mathcal{X},\mathcal{X}})}\,\right\}
    \f]
    for some \f$\kappa_0>0\f$ independent of \f$k\f$.
    ROL's trust-region algorithm allows for both inexact objective function and gradient evaluation.  
    The user must ensure that the inexact objective function, \f$f_k\f$ satisfies
    \f[
       |(f(x_k+s_k)-f_k(x_k+s_k)) - (f(x_k)-f_k(x_k))| \le 
        \eta_1 \min\{\,-\frac{1}{2}\langle B_k s, s\rangle_{\mathcal{X}} - \langle g_k,s\rangle_{\mathcal{X}},
                       \,r_k\,\}
    \f]
    where \f$\eta_1\f$ is the step acceptance threshold and \f$r_k\f$ is a user-defined forcing sequence of 
    positive numbers converging to zero.  The inexact gradient, \f$g_k\f$, must satisfy
    \f[
       \|g_k-\nabla J(x_k)\|_{\mathcal{X}} \le \kappa_1\min\{\,\|g_k\|_{\mathcal{X}},\,\Delta_k\,\}
    \f]
    where \f$\kappa_1 > 0\f$ is independent of \f$k\f$.

    For bound constrained problems, ROL employs projected Newton-type methods.  
    For these methods, ROL requires the notion of an active set of an iterate \f$x_k\f$, 
    \f[
       \mathcal{A}_k = \{\, \xi\in\Xi\,:\,x_k(\xi) = a(\xi)\,\}\cap
                       \{\, \xi\in\Xi\,:\,x_k(\xi) = b(\xi)\,\}.
    \f]
    Given \f$\mathcal{A}_k\f$ and a gradient approximation \f$g_k\f$, we define the binding set as
    \f[
       \mathcal{B}_k = \{\, \xi\in\Xi\,:\,x_k(\xi) = a(\xi) \;\text{and}\; -g_k(\xi) < 0 \,\}\cap
                       \{\, \xi\in\Xi\,:\,x_k(\xi) = b(\xi) \;\text{and}\; -g_k(\xi) > 0 \,\}.
    \f]
    The binding set contains the values of \f$\xi\in\Xi\f$ such that if \f$x_k(\xi)\f$ is on a 
    bound, then \f$(x_k+s_k)(\xi)\f$ will violate bound.  Using these definitions, ROL 
    prunes the variables in the binding set and runs a standard trust-region subproblem solver on the 
    free variables.  ROL then must perform a projected search to ensure the fraction of Cauchy decrease 
    condition is satisfied.

    TrustRegionStep implements a number of algorithms for both bound constrained and unconstrained 
    optimization.  These algorithms are: Cauchy Point, Dogleg, Double Dogleg, and Truncated CG.  
    Each of these methods can be run using a secant approximation of the Hessian. 
    These methods are chosen through the ETrustRegion enum.
*/


namespace ROL {

template <class Real>
class TrustRegionStep : public Step<Real> {
private:

  // ADDITIONAL VECTOR STORAGE
  Teuchos::RCP<Vector<Real> > xnew_; ///< Container for updated iteration vector.
  Teuchos::RCP<Vector<Real> > xold_; ///< Container for previous iteration vector.
  Teuchos::RCP<Vector<Real> > gp_;   ///< Container for previous gradient vector.

  // TRUST REGION INFORMATION
  Teuchos::RCP<TrustRegion<Real> >      trustRegion_; ///< Container for trust-region solver object.
  Teuchos::RCP<TrustRegionModel<Real> > model_;       ///< Container for trust-region model.
  ETrustRegion                          etr_;         ///< Trust-region subproblem solver type.
  ETrustRegionModel                     TRmodel_;     ///< Trust-region subproblem model type.
  Real                                  delMax_;      ///< Maximum trust-region radius.
  ETrustRegionFlag                      TRflag_;      ///< Trust-region exit flag.
  int                                   SPflag_;      ///< Subproblem solver termination flag.
  int                                   SPiter_;      ///< Subproblem solver iteration count.
  bool                                  bndActive_;   ///< Flag whether bound is activated.

  // SECANT INFORMATION
  Teuchos::RCP<Secant<Real> > secant_;           ///< Container for secant approximation.
  ESecant                     esec_;             ///< Secant type.
  bool                        useSecantHessVec_; ///< Flag whether to use a secant Hessian.
  bool                        useSecantPrecond_; ///< Flag whether to use a secant preconditioner. 

  // BOUND CONSTRAINED PARAMETERS
  Real scaleEps_;         ///< Scaling for epsilon-active sets.
  bool useProjectedGrad_; ///< Flag whether to use the projected gradient criticality measure.

  // POST SMOOTHING PARAMETERS
  Real alpha_init_; ///< Initial line-search parameter for projected methods.
  int  max_fval_;   ///< Maximum function evaluations in line-search for projected methods.
  Real mu_;         ///< Post-Smoothing tolerance for projected methods.
  Real beta_;       ///< Post-Smoothing rate for projected methods.

  // COLEMAN-LI PARAMETERS
  Real stepBackMax_;
  Real stepBackScale_;
  bool singleReflect_;

  // INEXACT COMPUTATION PARAMETERS
  std::vector<bool> useInexact_; ///< Flags for inexact (0) objective function, (1) gradient, (2) Hessian.
  Real              scale0_;     ///< Scale for inexact gradient computation.
  Real              scale1_;     ///< Scale for inexact gradient computation.

  // VERBOSITY SETTING
  int verbosity_; ///< Print additional information to screen if > 0.

  /** \brief Parse input ParameterList.

      This function sets trust region specific parameters specified in the user
      supplied ParameterList.
      @param[in]  parlist   is the user-supplied ParameterList.
  */
  void parseParameterList(Teuchos::ParameterList &parlist) {
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
    // Trust-Region Parameters
    Teuchos::ParameterList &slist = parlist.sublist("Step");
    Teuchos::ParameterList &list  = slist.sublist("Trust Region");
    step_state->searchSize = list.get("Initial Radius", static_cast<Real>(-1));
    delMax_                = list.get("Maximum Radius", static_cast<Real>(1.e8));
    // Inexactness Information
    Teuchos::ParameterList &glist = parlist.sublist("General");
    useInexact_.clear();
    useInexact_.push_back(glist.get("Inexact Objective Function",     false));
    useInexact_.push_back(glist.get("Inexact Gradient",               false));
    useInexact_.push_back(glist.get("Inexact Hessian-Times-A-Vector", false));
    // Trust-Region Inexactness Parameters
    Teuchos::ParameterList &ilist = list.sublist("Inexact").sublist("Gradient");
    scale0_ = ilist.get("Tolerance Scaling",  static_cast<Real>(0.1));
    scale1_ = ilist.get("Relative Tolerance", static_cast<Real>(2)); 
    // Initialize Trust Region Subproblem Solver Object
    etr_              = StringToETrustRegion(list.get("Subproblem Solver", "Dogleg"));  
    TRmodel_          = StringToETrustRegionModel(list.get("Subproblem Model", "Kelley-Sachs"));
    useProjectedGrad_ = glist.get("Projected Gradient Criticality Measure", false);
    trustRegion_      = TrustRegionFactory<Real>(parlist);
    // Scale for epsilon active sets
    scaleEps_  = glist.get("Scale for Epsilon Active Sets", static_cast<Real>(1));
    verbosity_ = glist.get("Print Verbosity",               0);
    // Post-smoothing parameters
    max_fval_    = list.sublist("Post-Smoothing").get("Function Evaluation Limit", 20);
    alpha_init_  = list.sublist("Post-Smoothing").get("Initial Step Size", static_cast<Real>(1));
    mu_          = list.sublist("Post-Smoothing").get("Tolerance",         static_cast<Real>(0.9999));
    beta_        = list.sublist("Post-Smoothing").get("Rate",              static_cast<Real>(0.01));
    // Coleman-Li parameters
    stepBackMax_   = list.sublist("Coleman-Li").get("Maximum Step Back",  static_cast<Real>(0.9999));
    stepBackScale_ = list.sublist("Coleman-Li").get("Maximum Step Scale", static_cast<Real>(1));
    singleReflect_ = list.sublist("Coleman-Li").get("Single Reflection",  true);
  }

  /** \brief Update gradient to iteratively satisfy inexactness condition.

      This function attempts to ensure that the inexact gradient condition,
      \f[
         \|g_k-\nabla J(x_k)\|_{\mathcal{X}} \le \kappa_1\min\{\,\|g_k\|_{\mathcal{X}},\,\Delta_k\,\},
      \f]
      is satisfied.  This function works under the assumption that the gradient function returns 
      a gradient approximation which satisfies the error tolerance prescribed by the tol input 
      parameter.  
      @param[in]      x          is the current optimization variable.
      @param[in]      obj        is the objective function.
      @param[in]      bnd        is the bound constraint.
      @param[in,out]  algo_state is the algorithm state.
  */
  void updateGradient( Vector<Real> &x, Objective<Real> &obj, BoundConstraint<Real> &bnd, 
                       AlgorithmState<Real> &algo_state ) {
    Teuchos::RCP<StepState<Real> > state = Step<Real>::getState();
    if ( useInexact_[1] ) {
      const Real one(1);
      //const Real oem2(1.e-2), oe4(1.e4);
      //Real c = scale0_*std::max(oem2,std::min(one,oe4*algo_state.gnorm));
      //Real gtol1  = c*std::min(algo_state.gnorm,state->searchSize);
      //Real gtol0  = scale1_*gtol1 + one;
      //while ( gtol0 > gtol1*scale1_ ) {
      //  obj.gradient(*(state->gradientVec),x,gtol1);
      //  algo_state.gnorm = computeCriticalityMeasure(*(state->gradientVec),x,bnd);
      //  gtol0 = gtol1;
      //  c = scale0_*std::max(oem2,std::min(one,oe4*algo_state.gnorm));
      //  gtol1 = c*std::min(algo_state.gnorm,state->searchSize);
      //}
      //algo_state.ngrad++;
      Real gtol1  = scale0_*std::min(algo_state.gnorm,state->searchSize);
      Real gtol0  = gtol1 + one;
      while ( gtol0 > gtol1 ) {
        obj.gradient(*(state->gradientVec),x,gtol1);
        algo_state.gnorm = computeCriticalityMeasure(*(state->gradientVec),x,bnd);
        gtol0 = gtol1;
        gtol1 = scale0_*std::min(algo_state.gnorm,state->searchSize);
      }
      algo_state.ngrad++;
    }
    else {
      Real gtol = std::sqrt(ROL_EPSILON<Real>());
      obj.gradient(*(state->gradientVec),x,gtol);
      algo_state.ngrad++;
      algo_state.gnorm = computeCriticalityMeasure(*(state->gradientVec),x,bnd);
    }
  }

  /** \brief Compute the criticality measure.

      This function computes either the norm of the gradient projected onto the tangent cone or 
      the norm of \f$x_k - P_{[a,b]}(x_k-g_k)\f$.
       @param[in]       g     is the current gradient.
       @param[in]       x     is the current iterate.
       @param[in]       bnd   is the bound constraint.
  */
  Real computeCriticalityMeasure( const Vector<Real> &g, const Vector<Real> &x, BoundConstraint<Real> &bnd ) {
    if ( bnd.isActivated() ) {
      if ( useProjectedGrad_ ) {
        gp_->set(g);
        bnd.computeProjectedGradient( *gp_, x );
        return gp_->norm();
      }
      else {
        Real one(1);
        xnew_->set(x);
        xnew_->axpy(-one,g.dual());
        bnd.project(*xnew_);
        xnew_->axpy(-one,x);
        return xnew_->norm();
      }
    }
    else {
      return g.norm();
    }
  }

public:

  using Step<Real>::initialize;
  using Step<Real>::compute;
  using Step<Real>::update;

  virtual ~TrustRegionStep() {}

  /** \brief Constructor.

      Standard constructor to build a TrustRegionStep object.  Algorithmic 
      specifications are passed in through a Teuchos::ParameterList.

      @param[in]     parlist    is a parameter list containing algorithmic specifications
  */
  TrustRegionStep( Teuchos::ParameterList & parlist )
    : Step<Real>(),
      xnew_(Teuchos::null), xold_(Teuchos::null), gp_(Teuchos::null),
      trustRegion_(Teuchos::null), model_(Teuchos::null),
      etr_(TRUSTREGION_DOGLEG), TRmodel_(TRUSTREGION_MODEL_KELLEYSACHS),
      delMax_(1e8), TRflag_(TRUSTREGION_FLAG_SUCCESS),
      SPflag_(0), SPiter_(0), bndActive_(false),
      secant_(Teuchos::null), esec_(SECANT_LBFGS),
      useSecantHessVec_(false), useSecantPrecond_(false),
      scaleEps_(1), useProjectedGrad_(false),
      alpha_init_(1), max_fval_(20), mu_(0.9999), beta_(0.01),
      stepBackMax_(0.9999), stepBackScale_(1), singleReflect_(true),
      scale0_(1), scale1_(1),
      verbosity_(0) {
    // Parse input parameterlist
    parseParameterList(parlist);
    // Create secant object
    Teuchos::ParameterList &glist = parlist.sublist("General");
    esec_             = StringToESecant(glist.sublist("Secant").get("Type","Limited-Memory BFGS"));
    useSecantPrecond_ = glist.sublist("Secant").get("Use as Preconditioner", false);
    useSecantHessVec_ = glist.sublist("Secant").get("Use as Hessian",        false);
    secant_           = SecantFactory<Real>(parlist);
  }

  /** \brief Constructor.

      Constructor to build a TrustRegionStep object with a user-defined 
      secant object.  Algorithmic specifications are passed in through 
      a Teuchos::ParameterList.

      @param[in]     secant     is a user-defined secant object
      @param[in]     parlist    is a parameter list containing algorithmic specifications
  */
  TrustRegionStep( Teuchos::RCP<Secant<Real> > &secant, Teuchos::ParameterList &parlist ) 
    : Step<Real>(),
      xnew_(Teuchos::null), xold_(Teuchos::null), gp_(Teuchos::null),
      trustRegion_(Teuchos::null), model_(Teuchos::null),
      etr_(TRUSTREGION_DOGLEG), TRmodel_(TRUSTREGION_MODEL_KELLEYSACHS),
      delMax_(1e8), TRflag_(TRUSTREGION_FLAG_SUCCESS),
      SPflag_(0), SPiter_(0), bndActive_(false),
      secant_(Teuchos::null), esec_(SECANT_LBFGS),
      useSecantHessVec_(false), useSecantPrecond_(false),
      scaleEps_(1), useProjectedGrad_(false),
      alpha_init_(1), max_fval_(20), mu_(0.9999), beta_(0.01),
      stepBackMax_(0.9999), stepBackScale_(1), singleReflect_(true),
      scale0_(1), scale1_(1),
      verbosity_(0) {
    // Parse input parameterlist
    parseParameterList(parlist);
    // Create secant object
    Teuchos::ParameterList &glist = parlist.sublist("General");
    useSecantPrecond_ = glist.sublist("Secant").get("Use as Preconditioner", false);
    useSecantHessVec_ = glist.sublist("Secant").get("Use as Hessian",        false);
    if ( secant_ == Teuchos::null ) {
      Teuchos::ParameterList Slist;
      Slist.sublist("General").sublist("Secant").set("Type","Limited-Memory BFGS");
      Slist.sublist("General").sublist("Secant").set("Maximum Storage",10);
      secant_ = SecantFactory<Real>(Slist);
    }
  }

  /** \brief Initialize step.

      This function initializes the information necessary to run the trust-region algorithm.
      @param[in]     x           is the initial guess for the optimization vector.
      @param[in]     obj         is the objective function.
      @param[in]     bnd         is the bound constraint.
      @param[in]     algo_state  is the algorithm state.
  */
  void initialize( Vector<Real> &x, const Vector<Real> &s, const Vector<Real> &g, 
                   Objective<Real> &obj, BoundConstraint<Real> &bnd, 
                   AlgorithmState<Real> &algo_state ) {
    Real p1(0.1), oe10(1.e10), zero(0), one(1), half(0.5), three(3), two(2), six(6);
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
    bndActive_ = bnd.isActivated();

    trustRegion_->initialize(x,s,g);

    Real htol = std::sqrt(ROL_EPSILON<Real>());
    Real ftol = p1*ROL_OVERFLOW<Real>(); 

    step_state->descentVec  = s.clone();
    step_state->gradientVec = g.clone();

    if ( bnd.isActivated() ) {
      // Make initial guess feasible
      bnd.project(x);
      xnew_ = x.clone();
      xold_ = x.clone();

      // Make initial guess strictly feasible
      if ( TRmodel_ == TRUSTREGION_MODEL_COLEMANLI ) {
        xold_->set(*bnd.getUpperVectorRCP());       // u
        xold_->axpy(-one,*bnd.getLowerVectorRCP()); // u - l
        Real minDiff = static_cast<Real>(1e-1)
          * std::min(one, half * xold_->reduce(Elementwise::ReductionMin<Real>()));

        class LowerFeasible : public Elementwise::BinaryFunction<Real> {
        private:
          const Real eps_;
        public:
          LowerFeasible(const Real eps) : eps_(eps) {}
          Real apply( const Real &x, const Real &y ) const {
            const Real tol = static_cast<Real>(100)*ROL_EPSILON<Real>();
            return (x < y+tol) ? y+eps_ : x;
          }
        };
        x.applyBinary(LowerFeasible(minDiff), *bnd.getLowerVectorRCP());

        class UpperFeasible : public Elementwise::BinaryFunction<Real> {
        private:
          const Real eps_;
        public:
          UpperFeasible(const Real eps) : eps_(eps) {}
          Real apply( const Real &x, const Real &y ) const {
            const Real tol = static_cast<Real>(100)*ROL_EPSILON<Real>();
            return (x > y-tol) ? y-eps_ : x;
          }
        };
        x.applyBinary(UpperFeasible(minDiff), *bnd.getUpperVectorRCP());
      }
    }
    gp_ = g.clone();

    // Update approximate gradient and approximate objective function.
    obj.update(x,true,algo_state.iter);    
    updateGradient(x,obj,bnd,algo_state);
    algo_state.snorm = oe10;
    algo_state.value = obj.value(x,ftol); 
    algo_state.nfval++;

    // Try to apply inverse Hessian
    if ( !useSecantHessVec_ &&
        (etr_ == TRUSTREGION_DOGLEG || etr_ == TRUSTREGION_DOUBLEDOGLEG) ) {
      try {
        Teuchos::RCP<Vector<Real> > v  = g.clone();
        Teuchos::RCP<Vector<Real> > hv = x.clone();
        obj.invHessVec(*hv,*v,x,htol);
      }
      catch (std::exception &e) {
        useSecantHessVec_ = true;
      }
    }

    // Evaluate Objective Function at Cauchy Point
    if ( step_state->searchSize <= zero ) {
      Teuchos::RCP<Vector<Real> > Bg = g.clone();
      if ( useSecantHessVec_ ) {
        secant_->applyB(*Bg,(step_state->gradientVec)->dual());
      }
      else {
        obj.hessVec(*Bg,(step_state->gradientVec)->dual(),x,htol);
      }
      Real gBg = Bg->dot(*(step_state->gradientVec));
      Real alpha = one;
      if ( gBg > ROL_EPSILON<Real>() ) {
        alpha = algo_state.gnorm*algo_state.gnorm/gBg;
      }
      // Evaluate the objective function at the Cauchy point
      Teuchos::RCP<Vector<Real> > cp = s.clone();
      cp->set((step_state->gradientVec)->dual()); 
      cp->scale(-alpha);
      Teuchos::RCP<Vector<Real> > xcp = x.clone();
      xcp->set(x);
      xcp->plus(*cp);
      if ( bnd.isActivated() ) {
        bnd.project(*xcp);
      }
      obj.update(*xcp);
      Real fnew = obj.value(*xcp,ftol); // MUST DO SOMETHING HERE WITH FTOL
      algo_state.nfval++;
      // Perform cubic interpolation to determine initial trust region radius
      Real gs = cp->dot((step_state->gradientVec)->dual());
      Real a  = fnew - algo_state.value - gs - half*alpha*alpha*gBg;
      if ( std::abs(a) < ROL_EPSILON<Real>() ) { 
        // a = 0 implies the objective is quadratic in the negative gradient direction
        step_state->searchSize = std::min(alpha*algo_state.gnorm,delMax_);
      }
      else {
        Real b  = half*alpha*alpha*gBg;
        Real c  = gs;
        if ( b*b-three*a*c > ROL_EPSILON<Real>() ) {
          // There is at least one critical point
          Real t1 = (-b-std::sqrt(b*b-three*a*c))/(three*a);
          Real t2 = (-b+std::sqrt(b*b-three*a*c))/(three*a);
          if ( six*a*t1 + two*b > zero ) {
            // t1 is the minimizer
            step_state->searchSize = std::min(t1*alpha*algo_state.gnorm,delMax_);
          }
          else {
            // t2 is the minimizer
            step_state->searchSize = std::min(t2*alpha*algo_state.gnorm,delMax_);
          }
        }
        else {
          step_state->searchSize = std::min(alpha*algo_state.gnorm,delMax_);
        }
      }
    }
  }

  /** \brief Compute step.

      Computes a trial step, \f$s_k\f$ by solving the trust-region subproblem.  
      The trust-region subproblem solver is defined by the enum ETrustRegion.  
      @param[out]      s          is the computed trial step
      @param[in]       x          is the current iterate
      @param[in]       obj        is the objective function
      @param[in]       bnd        are the bound constraints
      @param[in]       algo_state contains the current state of the algorithm
  */
  void compute( Vector<Real> &s, const Vector<Real> &x, Objective<Real> &obj, BoundConstraint<Real> &bnd, 
                AlgorithmState<Real> &algo_state ) {
    // Get step state
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
    // Build trust-region model
    if (bnd.isActivated()) { 
      if ( TRmodel_ == TRUSTREGION_MODEL_KELLEYSACHS ) {
//      Real eps = scaleEps_*algo_state.gnorm;
        Real eps = scaleEps_ * std::min(std::pow(algo_state.gnorm,static_cast<Real>(0.75)),
                                        static_cast<Real>(0.01));
        model_ = Teuchos::rcp(new ROL::KelleySachsModel<Real>(obj,
                                                              bnd,
                                                              x,
                                                              *(step_state->gradientVec),
                                                              eps,
                                                              secant_,
                                                              useSecantPrecond_,
                                                              useSecantHessVec_));
      }
      else if ( TRmodel_ == TRUSTREGION_MODEL_COLEMANLI ) {
        model_ = Teuchos::rcp(new ROL::ColemanLiModel<Real>(obj,
                                                            bnd,
                                                            x,
                                                            *(step_state->gradientVec),
                                                            secant_,
                                                            useSecantPrecond_,
                                                            useSecantHessVec_,
                                                            step_state->searchSize,
                                                            stepBackMax_,
                                                            stepBackScale_,
                                                            singleReflect_));
      }
      else {
        TEUCHOS_TEST_FOR_EXCEPTION( true, std::invalid_argument,
          ">>> ERROR (ROL::TrustRegionStep): Invalid trust-region model!");
      }
    }
    else {
      model_ = Teuchos::rcp(new ROL::TrustRegionModel<Real>(obj,
                                                            x,
                                                            *(step_state->gradientVec),
                                                            secant_,
                                                            useSecantPrecond_,
                                                            useSecantHessVec_));
    }
    // Minimize trust-region model over trust-region constraint
    SPflag_ = 0; SPiter_ = 0;
    trustRegion_->run(s,algo_state.snorm,SPflag_,SPiter_,step_state->searchSize,*model_);
  }

  /** \brief Update step, if successful.

      Given a trial step, \f$s_k\f$, this function updates \f$x_{k+1}=x_k+s_k\f$. 
      This function also updates the secant approximation.

      @param[in,out]   x          is the updated iterate
      @param[in]       s          is the computed trial step
      @param[in]       obj        is the objective function
      @param[in]       bnd        are the bound constraints
      @param[in]       algo_state contains the current state of the algorithm
  */
  void update( Vector<Real>          &x,
               const Vector<Real>    &s,
               Objective<Real>       &obj,
               BoundConstraint<Real> &bnd, 
               AlgorithmState<Real>  &algo_state ) {
    // Get step state
    Teuchos::RCP<StepState<Real> > state = Step<Real>::getState();
    // Store previous step for constraint computations
    if ( bnd.isActivated() ) {
      xold_->set(x);
    }
    // Update trust-region information;
    // Performs a hard update on the objective function
    TRflag_ = TRUSTREGION_FLAG_SUCCESS;
    state->nfval = 0;
    state->ngrad = 0;
    Real fold = algo_state.value;
    Real fnew(0);
    algo_state.iter++;
    trustRegion_->update(x,fnew,state->searchSize,state->nfval,state->ngrad,TRflag_,
                         s,algo_state.snorm,fold,*(state->gradientVec),algo_state.iter,
                         obj,bnd,*model_);
    algo_state.nfval += state->nfval;
    algo_state.ngrad += state->ngrad;
    // If step is accepted ...
    // Compute new gradient and update secant storage
    if ( TRflag_ == TRUSTREGION_FLAG_SUCCESS || 
         TRflag_ == TRUSTREGION_FLAG_POSPREDNEG ) {  
      // Perform line search (smoothing) to ensure decrease 
      if ( bnd.isActivated() && TRmodel_ == TRUSTREGION_MODEL_KELLEYSACHS ) {
        Real tol = std::sqrt(ROL_EPSILON<Real>());
        // Compute new gradient
        obj.gradient(*gp_,x,tol); // MUST DO SOMETHING HERE WITH TOL
        algo_state.ngrad++;
        // Compute smoothed step
        Real alpha(1);
        xnew_->set(x);
        xnew_->axpy(-alpha*alpha_init_,gp_->dual());
        bnd.project(*xnew_);
        // Compute new objective value
        obj.update(*xnew_,true,algo_state.iter);
        Real ftmp = obj.value(*xnew_,tol); // MUST DO SOMETHING HERE WITH TOL
        algo_state.nfval++;
        // Perform smoothing
        int cnt = 0;
        alpha = static_cast<Real>(1)/alpha_init_;
        while ( (fnew-ftmp) <= mu_*(fnew-fold) ) { 
          xnew_->set(x);
          xnew_->axpy(-alpha*alpha_init_,gp_->dual());
          bnd.project(*xnew_);
          obj.update(*xnew_,true,algo_state.iter);
          ftmp = obj.value(*xnew_,tol); // MUST DO SOMETHING HERE WITH TOL
          algo_state.nfval++;
          if ( cnt >= max_fval_ ) {
            break;
          }
          alpha *= beta_;
          cnt++;
        }
        // Store objective function and iteration information
        fnew = ftmp;
        x.set(*xnew_);
      }
      // Store previous gradient for secant update
      if ( useSecantHessVec_ || useSecantPrecond_ ) {
        gp_->set(*(state->gradientVec));
      }
      // Update objective function and approximate model
      updateGradient(x,obj,bnd,algo_state);
      // Update secant information
      if ( useSecantHessVec_ || useSecantPrecond_ ) {
        if ( bnd.isActivated() ) { // Compute new constrained step
          xnew_->set(x);
          xnew_->axpy(-static_cast<Real>(1),*xold_);
          secant_->updateStorage(x,*(state->gradientVec),*gp_,*xnew_,algo_state.snorm,algo_state.iter+1);
        }
        else {
          secant_->updateStorage(x,*(state->gradientVec),*gp_,s,algo_state.snorm,algo_state.iter+1);
        }
      }
      // Update algorithm state
      (algo_state.iterateVec)->set(x);
    }
    else {
      if ( useInexact_[1] ) {
        // Update objective function and approximate model
        updateGradient(x,obj,bnd,algo_state);
      }
    }
    // Update algorithm state
    algo_state.value = fnew;
  }

  /** \brief Print iterate header.

      This function produces a string containing header information.
  */
  std::string printHeader( void ) const  {
    std::stringstream hist;

    if(verbosity_>0) {
      hist << std::string(114,'-') << "\n"; 

      hist << "Trust-Region status output definitions\n\n";
       
      hist << "  iter    - Number of iterates (steps taken) \n";        
      hist << "  value   - Objective function value \n";        
      hist << "  gnorm   - Norm of the gradient\n";
      hist << "  snorm   - Norm of the step (update to optimization vector)\n";  
      hist << "  delta   - Trust-Region radius\n";
      hist << "  #fval   - Number of times the objective function was evaluated\n";
      hist << "  #grad   - Number of times the gradient was computed\n";
      
        
      
      hist << "\n";
      hist << "  tr_flag - Trust-Region flag" << "\n";
      for( int flag = TRUSTREGION_FLAG_SUCCESS; flag != TRUSTREGION_FLAG_UNDEFINED; ++flag ) {
        hist << "    " << NumberToString(flag) << " - " 
             << ETrustRegionFlagToString(static_cast<ETrustRegionFlag>(flag)) << "\n";
          
      } 

      if( etr_ == TRUSTREGION_TRUNCATEDCG ) {
        hist << "\n";
        hist << "  iterCG - Number of Truncated CG iterations\n\n";
        hist << "  flagGC - Trust-Region Truncated CG flag" << "\n";
        for( int flag = CG_FLAG_SUCCESS; flag != CG_FLAG_UNDEFINED; ++flag ) {
          hist << "    " << NumberToString(flag) << " - "
               << ECGFlagToString(static_cast<ECGFlag>(flag)) << "\n"; 
        }            
      }

      hist << std::string(114,'-') << "\n"; 
    }

    hist << "  ";
    hist << std::setw(6)  << std::left << "iter";
    hist << std::setw(15) << std::left << "value";
    hist << std::setw(15) << std::left << "gnorm";
    hist << std::setw(15) << std::left << "snorm";
    hist << std::setw(15) << std::left << "delta";
    hist << std::setw(10) << std::left << "#fval";
    hist << std::setw(10) << std::left << "#grad";
    hist << std::setw(10) << std::left << "tr_flag";
    if ( etr_ == TRUSTREGION_TRUNCATEDCG ) {
      hist << std::setw(10) << std::left << "iterCG";
      hist << std::setw(10) << std::left << "flagCG";
    }
    hist << "\n";
    return hist.str();
  }

  /** \brief Print step name.

      This function produces a string containing the algorithmic step information.
  */
  std::string printName( void ) const {
    std::stringstream hist;
    hist << "\n" << ETrustRegionToString(etr_) << " Trust-Region Solver";
    if ( useSecantPrecond_ || useSecantHessVec_ ) {
      if ( useSecantPrecond_ && !useSecantHessVec_ ) {
        hist << " with " << ESecantToString(esec_) << " Preconditioning\n";
      }
      else if ( !useSecantPrecond_ && useSecantHessVec_ ) {
        hist << " with " << ESecantToString(esec_) << " Hessian Approximation\n";
      }
      else {
        hist << " with " << ESecantToString(esec_) << " Preconditioning and Hessian Approximation\n";
      }
    }
    else {
      hist << "\n";
    }
    if ( bndActive_ ) {
      hist << "Trust-Region Model: " << ETrustRegionModelToString(TRmodel_) << "\n";
    }
    return hist.str();
  }

  /** \brief Print iterate status.

      This function prints the iteration status.

      @param[in]     algo_state    is the current state of the algorithm
      @param[in]     printHeader   if ste to true will print the header at each iteration
  */
  std::string print( AlgorithmState<Real> & algo_state, bool print_header = false ) const  {
    const Teuchos::RCP<const StepState<Real> >& step_state = Step<Real>::getStepState();

    std::stringstream hist;
    hist << std::scientific << std::setprecision(6);
    if ( algo_state.iter == 0 ) {
      hist << printName();
    }
    if ( print_header ) {
      hist << printHeader();
    }
    if ( algo_state.iter == 0 ) {
      hist << "  ";
      hist << std::setw(6)  << std::left << algo_state.iter;
      hist << std::setw(15) << std::left << algo_state.value;
      hist << std::setw(15) << std::left << algo_state.gnorm;
      hist << std::setw(15) << std::left << " "; 
      hist << std::setw(15) << std::left << step_state->searchSize; 
      hist << "\n";
    }
    else {
      hist << "  "; 
      hist << std::setw(6)  << std::left << algo_state.iter;  
      hist << std::setw(15) << std::left << algo_state.value; 
      hist << std::setw(15) << std::left << algo_state.gnorm; 
      hist << std::setw(15) << std::left << algo_state.snorm; 
      hist << std::setw(15) << std::left << step_state->searchSize; 
      hist << std::setw(10) << std::left << algo_state.nfval;              
      hist << std::setw(10) << std::left << algo_state.ngrad;              
      hist << std::setw(10) << std::left << TRflag_;              
      if ( etr_ == TRUSTREGION_TRUNCATEDCG ) {
        hist << std::setw(10) << std::left << SPiter_;
        hist << std::setw(10) << std::left << SPflag_;
      }
      hist << "\n";
    }
    return hist.str();
  }

}; // class Step

} // namespace ROL

#endif