This file is indexed.

/usr/include/trilinos/ROL_lBFGS.hpp is in libtrilinos-rol-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
// @HEADER
// ************************************************************************
//
//               Rapid Optimization Library (ROL) Package
//                 Copyright (2014) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact lead developers:
//              Drew Kouri   (dpkouri@sandia.gov) and
//              Denis Ridzal (dridzal@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef ROL_LBFGS_H
#define ROL_LBFGS_H

/** \class ROL::lBFGS
    \brief Provides definitions for limited-memory BFGS operators.
*/

#include "ROL_Secant.hpp"

namespace ROL {

template<class Real>
class lBFGS : public Secant<Real> {
public:
  lBFGS(int M) : Secant<Real>(M) {}

  // Apply lBFGS Approximate Inverse Hessian
  void applyH( Vector<Real> &Hv, const Vector<Real> &v ) const {
    // Get Generic Secant State
    const Teuchos::RCP<SecantState<Real> >& state = Secant<Real>::get_state();
    Real zero(0);

    Hv.set(v.dual());
    std::vector<Real> alpha(state->current+1,zero);
    for (int i = state->current; i>=0; i--) {
      alpha[i]  = state->iterDiff[i]->dot(Hv);
      alpha[i] /= state->product[i];
      Hv.axpy(-alpha[i],(state->gradDiff[i])->dual());
    }

    // Apply initial inverse Hessian approximation to v
    Teuchos::RCP<Vector<Real> > tmp = Hv.clone();
    Secant<Real>::applyH0(*tmp,Hv.dual());
    Hv.set(*tmp);

    Real beta(0);
    for (int i = 0; i <= state->current; i++) {
      beta  = Hv.dot((state->gradDiff[i])->dual());
      beta /= state->product[i];
      Hv.axpy((alpha[i]-beta),*(state->iterDiff[i]));
    }
  }

  // Apply lBFGS Approximate Hessian
  void applyB( Vector<Real> &Bv, const Vector<Real> &v ) const {
    // Get Generic Secant State
    const Teuchos::RCP<SecantState<Real> >& state = Secant<Real>::get_state();
    Real one(1);

    // Apply initial Hessian approximation to v
    Secant<Real>::applyB0(Bv,v);

    std::vector<Teuchos::RCP<Vector<Real> > > a(state->current+1);
    std::vector<Teuchos::RCP<Vector<Real> > > b(state->current+1);
    Real bv(0), av(0), bs(0), as(0);
    for (int i = 0; i <= state->current; i++) {
      b[i] = Bv.clone();
      b[i]->set(*(state->gradDiff[i]));
      b[i]->scale(one/sqrt(state->product[i]));
      bv = v.dot(b[i]->dual());
      Bv.axpy(bv,*b[i]);

      a[i] = Bv.clone();
      Secant<Real>::applyB0(*a[i],*(state->iterDiff[i]));

      for (int j = 0; j < i; j++) {
        bs = (state->iterDiff[i])->dot(b[j]->dual());
        a[i]->axpy(bs,*b[j]);
        as = (state->iterDiff[i])->dot(a[j]->dual());
        a[i]->axpy(-as,*a[j]);
      }
      as = (state->iterDiff[i])->dot(a[i]->dual());
      a[i]->scale(one/sqrt(as));
      av = v.dot(a[i]->dual());
      Bv.axpy(-av,*a[i]);
    }
  }
};

}

#endif