/usr/include/trilinos/Stokhos_LTBSparse3Tensor.hpp is in libtrilinos-stokhos-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 | // @HEADER
// ***********************************************************************
//
// Stokhos Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER
#ifndef STOKHOS_LTB_SPARSE_3_TENSOR_HPP
#define STOKHOS_LTB_SPARSE_3_TENSOR_HPP
#include <ostream>
#include "Stokhos_TotalOrderBasis.hpp"
#include "Stokhos_OrthogPolyApprox.hpp"
namespace Stokhos {
/*!
* \brief Data structure storing a sparse 3-tensor C(i,j,k) in a
* a tree-based format for lexicographically ordered product bases.
*/
template <typename ordinal_type, typename value_type>
class LTBSparse3Tensor {
public:
//! Node type used in constructing the tree
struct CijkNode {
Teuchos::Array< Teuchos::RCP<CijkNode> > children;
Teuchos::Array<value_type> values;
ordinal_type p_i, p_j, p_k;
ordinal_type i_begin, j_begin, k_begin;
ordinal_type i_size, j_size, k_size;
ordinal_type my_num_entries, total_num_entries;
ordinal_type total_num_leafs;
bool is_leaf, parent_j_equals_k;
};
//! Constructor
LTBSparse3Tensor(const bool symm) : is_symmetric(symm) {}
//! Destructor
~LTBSparse3Tensor() {}
//! Set the head node
void setHeadNode(const Teuchos::RCP<CijkNode>& h) { head = h; }
//! Get the head node
Teuchos::RCP<const CijkNode> getHeadNode() const { return head; }
//! Print tensor
void print(std::ostream& os) const {}
//! Get Cijk value for a given i, j, k indices
value_type getValue(ordinal_type i, ordinal_type j, ordinal_type k) const
{}
//! Return number of non-zero entries
ordinal_type num_entries() const {
if (head != Teuchos::null)
return head->total_num_entries;
return 0;
}
//! Return number of nodes
ordinal_type num_leafs() const {
if (head != Teuchos::null)
return head->total_num_leafs;
return 0;
}
//! Return if symmetric
bool symmetric() const { return is_symmetric; }
private:
// Prohibit copying
LTBSparse3Tensor(const LTBSparse3Tensor&);
// Prohibit Assignment
LTBSparse3Tensor& operator=(const LTBSparse3Tensor& b);
protected:
Teuchos::RCP<CijkNode> head;
bool is_symmetric;
}; // class LTBSparse3Tensor
/*! \relates LTBSparse3Tensor
* Print triple product tensor to output stream
*/
template <typename ordinal_type, typename value_type>
std::ostream&
operator << (std::ostream& os,
const LTBSparse3Tensor<ordinal_type, value_type>& Cijk) {
Cijk.print(os);
return os;
}
template <typename ordinal_type>
struct LexicographicTreeBasisNode {
Teuchos::Array< Teuchos::RCP<LexicographicTreeBasisNode> > children;
Teuchos::Array< Stokhos::MultiIndex<ordinal_type> > terms;
ordinal_type index_begin;
ordinal_type block_size;
// Default constructor
LexicographicTreeBasisNode() :
children(), terms(), index_begin(0), block_size(0) {}
// Copy constructor
LexicographicTreeBasisNode(const LexicographicTreeBasisNode& node) :
children(node.children.size()), terms(node.terms),
index_begin(node.index_begin), block_size(node.block_size) {
for (ordinal_type i=0; i<children.size(); ++i)
children[i] =
Teuchos::rcp(new LexicographicTreeBasisNode(*(node->children[i])));
}
// Assignment operator
LexicographicTreeBasisNode&
operator=(const LexicographicTreeBasisNode& node) {
if (this != &node) {
children.resize(node.children.size());
for (ordinal_type i=0; i<children.size(); ++i)
children[i] =
Teuchos::rcp(new LexicographicTreeBasisNode(*(node->children[i])));
terms = node.terms;
index_begin = node.index_begin;
block_size = node.block_size;
}
return *this;
}
};
template <typename ordinal_type>
Teuchos::RCP< LexicographicTreeBasisNode<ordinal_type> >
build_lexicographic_basis_tree(
const Teuchos::ArrayView<const ordinal_type>& basis_orders,
const ordinal_type total_order,
const ordinal_type index_begin = ordinal_type(0),
const ordinal_type order_sum = ordinal_type(0),
const Stokhos::MultiIndex<ordinal_type>& term_prefix =
Stokhos::MultiIndex<ordinal_type>()) {
typedef LexicographicTreeBasisNode<ordinal_type> node_type;
ordinal_type my_d = basis_orders.size();
ordinal_type prev_d = term_prefix.dimension();
ordinal_type p = basis_orders[0];
ordinal_type my_p = std::min(total_order-order_sum, p);
Teuchos::RCP<node_type> node = Teuchos::rcp(new node_type);
node->index_begin = index_begin;
node->terms.resize(my_p+1);
for (ordinal_type i=0; i<=my_p; ++i) {
node->terms[i].resize(prev_d+1);
for (ordinal_type j=0; j<prev_d; ++j)
node->terms[i][j] = term_prefix[j];
node->terms[i][prev_d] = i;
}
// Base case for dimension = 1
if (my_d == 1) {
node->block_size = my_p+1;
}
// General case -- call recursively stripping off first dimension
else {
Teuchos::ArrayView<const ordinal_type> bo =
Teuchos::arrayView(&basis_orders[1],my_d-1);
node->children.resize(my_p+1);
node->index_begin = index_begin;
node->block_size = 0;
for (ordinal_type i=0; i<=my_p; ++i) {
Teuchos::RCP<node_type> child = build_lexicographic_basis_tree(
bo, total_order, index_begin+node->block_size, order_sum+i,
node->terms[i]);
node->children[i] = child;
node->block_size += child->block_size;
}
}
return node;
}
// An approach for building a sparse 3-tensor only for lexicographically
// ordered total order basis using a tree-based format
template <typename ordinal_type,
typename value_type>
Teuchos::RCP< LTBSparse3Tensor<ordinal_type, value_type> >
computeTripleProductTensorLTB(
const TotalOrderBasis<ordinal_type, value_type,LexographicLess<MultiIndex<ordinal_type> > >& product_basis,
bool symmetric = false) {
#ifdef STOKHOS_TEUCHOS_TIME_MONITOR
TEUCHOS_FUNC_TIME_MONITOR("Stokhos: Total Triple-Product Tensor Time");
#endif
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::Array;
using Teuchos::ArrayView;
const Array< RCP<const OneDOrthogPolyBasis<ordinal_type, value_type> > >& bases = product_basis.getCoordinateBases();
ordinal_type d = bases.size();
ordinal_type p = product_basis.order();
Array<ordinal_type> basis_orders(d);
for (int i=0; i<d; ++i)
basis_orders[i] = bases[i]->order();
ArrayView<const ordinal_type> basis_orders_view = basis_orders();
// Create 1-D triple products
Array< RCP<Sparse3Tensor<ordinal_type,value_type> > > Cijk_1d(d);
for (ordinal_type i=0; i<d; i++) {
Cijk_1d[i] =
bases[i]->computeSparseTripleProductTensor(bases[i]->order()+1);
}
ArrayView<const RCP<Sparse3Tensor<ordinal_type,value_type> > > Cijk_1d_view
= Cijk_1d();
// Create lexicographic tree basis
Teuchos::RCP< LexicographicTreeBasisNode<ordinal_type> > ltb =
build_lexicographic_basis_tree(basis_orders_view, p);
// Current implementation is recursive on the dimension d
typedef LTBSparse3Tensor<ordinal_type, value_type> Cijk_type;
RCP<Cijk_type> Cijk = rcp(new Cijk_type(symmetric));
RCP<typename Cijk_type::CijkNode> head =
computeCijkLTBNode(
basis_orders_view, Cijk_1d_view, ltb, ltb, ltb, p, symmetric);
Cijk->setHeadNode(head);
return Cijk;
}
template <typename ordinal_type,
typename value_type>
Teuchos::RCP<typename LTBSparse3Tensor<ordinal_type, value_type>::CijkNode>
computeCijkLTBNode(
const Teuchos::ArrayView<const ordinal_type>& basis_orders,
const Teuchos::ArrayView<const Teuchos::RCP<Sparse3Tensor<ordinal_type,value_type> > >& Cijk_1d,
const Teuchos::RCP<LexicographicTreeBasisNode<ordinal_type> >& i_ltb,
const Teuchos::RCP<LexicographicTreeBasisNode<ordinal_type> >& j_ltb,
const Teuchos::RCP<LexicographicTreeBasisNode<ordinal_type> >& k_ltb,
const ordinal_type total_order,
const bool symmetric,
const ordinal_type sum_i = ordinal_type(0),
const ordinal_type sum_j = ordinal_type(0),
const ordinal_type sum_k = ordinal_type(0),
const value_type cijk_base = value_type(1)) {
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::ArrayView;
using Teuchos::arrayView;
typedef typename LTBSparse3Tensor<ordinal_type, value_type>::CijkNode node_type;
typedef ProductBasisUtils::Cijk_1D_Iterator<ordinal_type> Cijk_Iterator;
ordinal_type my_d = basis_orders.size();
ordinal_type p = basis_orders[0];
ordinal_type p_i = std::min(total_order-sum_i, p);
ordinal_type p_j = std::min(total_order-sum_j, p);
ordinal_type p_k = std::min(total_order-sum_k, p);
Cijk_Iterator cijk_iterator(p_i, p_j, p_k, symmetric);
RCP<node_type> node = rcp(new node_type);
node->p_i = p_i;
node->p_j = p_j;
node->p_k = p_k;
node->i_begin = i_ltb->index_begin;
node->j_begin = j_ltb->index_begin;
node->k_begin = k_ltb->index_begin;
node->i_size = i_ltb->block_size;
node->j_size = j_ltb->block_size;
node->k_size = k_ltb->block_size;
// Base case -- compute the actual cijk values
if (my_d == 1) {
node->is_leaf = true;
bool more = true;
while (more) {
value_type cijk =
Cijk_1d[0]->getValue(cijk_iterator.i,
cijk_iterator.j,
cijk_iterator.k);
node->values.push_back(cijk*cijk_base);
more = cijk_iterator.increment();
}
node->my_num_entries = node->values.size();
node->total_num_entries = node->values.size();
node->total_num_leafs = 1;
}
// General case -- call recursively stripping off first dimension
else {
node->is_leaf = false;
ArrayView<const ordinal_type> bo = arrayView(&basis_orders[1], my_d-1);
ArrayView<const RCP<Sparse3Tensor<ordinal_type,value_type> > > c1d =
arrayView(&Cijk_1d[1], my_d-1);
node->total_num_entries = 0;
node->total_num_leafs = 0;
bool more = true;
while (more) {
value_type cijk =
Cijk_1d[0]->getValue(cijk_iterator.i,
cijk_iterator.j,
cijk_iterator.k);
RCP<node_type> child =
computeCijkLTBNode(bo, c1d,
i_ltb->children[cijk_iterator.i],
j_ltb->children[cijk_iterator.j],
k_ltb->children[cijk_iterator.k],
total_order, symmetric,
sum_i + cijk_iterator.i,
sum_j + cijk_iterator.j,
sum_k + cijk_iterator.k,
cijk_base*cijk);
node->children.push_back(child);
node->total_num_entries += child->total_num_entries;
node->total_num_leafs += child->total_num_leafs;
more = cijk_iterator.increment();
}
node->my_num_entries = node->children.size();
}
return node;
}
// An approach for building a sparse 3-tensor only for lexicographically
// ordered total order basis using a tree-based format -- the leaf nodes
// are replaced by a dense p_i x p_j x p_k block
template <typename ordinal_type,
typename value_type>
Teuchos::RCP< LTBSparse3Tensor<ordinal_type, value_type> >
computeTripleProductTensorLTBBlockLeaf(
const TotalOrderBasis<ordinal_type, value_type,LexographicLess<MultiIndex<ordinal_type> > >& product_basis,
bool symmetric = false) {
#ifdef STOKHOS_TEUCHOS_TIME_MONITOR
TEUCHOS_FUNC_TIME_MONITOR("Stokhos: Total Triple-Product Tensor Time");
#endif
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::Array;
using Teuchos::ArrayView;
const Array< RCP<const OneDOrthogPolyBasis<ordinal_type, value_type> > >& bases = product_basis.getCoordinateBases();
ordinal_type d = bases.size();
ordinal_type p = product_basis.order();
Array<ordinal_type> basis_orders(d);
for (int i=0; i<d; ++i)
basis_orders[i] = bases[i]->order();
ArrayView<const ordinal_type> basis_orders_view = basis_orders();
// Create 1-D triple products
Array< RCP<Dense3Tensor<ordinal_type,value_type> > > Cijk_1d(d);
for (ordinal_type i=0; i<d; i++) {
Cijk_1d[i] = bases[i]->computeTripleProductTensor();
}
ArrayView<const RCP<Dense3Tensor<ordinal_type,value_type> > > Cijk_1d_view
= Cijk_1d();
// Create lexicographic tree basis
Teuchos::RCP< LexicographicTreeBasisNode<ordinal_type> > ltb =
build_lexicographic_basis_tree(basis_orders_view, p);
// Current implementation is recursive on the dimension d
typedef LTBSparse3Tensor<ordinal_type, value_type> Cijk_type;
RCP<Cijk_type> Cijk = rcp(new Cijk_type(symmetric));
RCP<typename Cijk_type::CijkNode> head =
computeCijkLTBNodeBlockLeaf(
basis_orders_view, Cijk_1d_view, ltb, ltb, ltb, p, symmetric);
Cijk->setHeadNode(head);
return Cijk;
}
template <typename ordinal_type,
typename value_type>
Teuchos::RCP<typename LTBSparse3Tensor<ordinal_type, value_type>::CijkNode>
computeCijkLTBNodeBlockLeaf(
const Teuchos::ArrayView<const ordinal_type>& basis_orders,
const Teuchos::ArrayView<const Teuchos::RCP<Dense3Tensor<ordinal_type,value_type> > >& Cijk_1d,
const Teuchos::RCP<LexicographicTreeBasisNode<ordinal_type> >& i_ltb,
const Teuchos::RCP<LexicographicTreeBasisNode<ordinal_type> >& j_ltb,
const Teuchos::RCP<LexicographicTreeBasisNode<ordinal_type> >& k_ltb,
const ordinal_type total_order,
const bool symmetric,
const ordinal_type sum_i = ordinal_type(0),
const ordinal_type sum_j = ordinal_type(0),
const ordinal_type sum_k = ordinal_type(0),
const value_type cijk_base = value_type(1),
const bool parent_j_equals_k = true) {
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::ArrayView;
using Teuchos::arrayView;
typedef typename LTBSparse3Tensor<ordinal_type, value_type>::CijkNode node_type;
ordinal_type my_d = basis_orders.size();
ordinal_type p = basis_orders[0];
ordinal_type p_i = std::min(total_order-sum_i, p);
ordinal_type p_j = std::min(total_order-sum_j, p);
ordinal_type p_k = std::min(total_order-sum_k, p);
RCP<node_type> node = rcp(new node_type);
node->p_i = p_i;
node->p_j = p_j;
node->p_k = p_k;
node->i_begin = i_ltb->index_begin;
node->j_begin = j_ltb->index_begin;
node->k_begin = k_ltb->index_begin;
node->i_size = i_ltb->block_size;
node->j_size = j_ltb->block_size;
node->k_size = k_ltb->block_size;
node->parent_j_equals_k = parent_j_equals_k;
// Base case -- compute the actual cijk values as a "brick"
// Could store values as a "pyramid" using commented out code below
// However that seems to result in very bad performance, e.g., a lot
// of register spill in multiply code based on this tensor
if (my_d == 1) {
node->is_leaf = true;
node->values.reserve((p_i+1)*(p_j+1)*(p_k+1));
for (ordinal_type i=0; i<=p_i; ++i) {
for (ordinal_type j=0; j<=p_j; ++j) {
// ordinal_type k0 = parent_j_equals_k ? std::max(j,std::abs(i-j)) :
// std::abs(i-j);
// if (symmetric && (k0%2 != (i+j)%2)) ++k0;
// const ordinal_type k_end = std::min(p_k,i+j);
// const ordinal_type k_inc = symmetric ? 2 : 1;
ordinal_type k0 = parent_j_equals_k ? j : 0;
if (symmetric && (k0%2 != (i+j)%2)) ++k0;
const ordinal_type k_end = p_k;
const ordinal_type k_inc = symmetric ? 2 : 1;
for (ordinal_type k=k0; k<=k_end; k+=k_inc) {
value_type cijk = (*Cijk_1d[0])(i, j, k);
if (j+node->j_begin == k+node->k_begin) cijk *= 0.5;
node->values.push_back(cijk*cijk_base);
}
}
}
node->my_num_entries = node->values.size();
node->total_num_entries = node->values.size();
node->total_num_leafs = 1;
}
// General case -- call recursively stripping off first dimension
else {
node->is_leaf = false;
ArrayView<const ordinal_type> bo = arrayView(&basis_orders[1], my_d-1);
ArrayView<const RCP<Dense3Tensor<ordinal_type,value_type> > > c1d =
arrayView(&Cijk_1d[1], my_d-1);
node->total_num_entries = 0;
node->total_num_leafs = 0;
for (ordinal_type i=0; i<=p_i; ++i) {
for (ordinal_type j=0; j<=p_j; ++j) {
ordinal_type k0 = parent_j_equals_k ? std::max(j,std::abs(i-j)) :
std::abs(i-j);
if (symmetric && (k0%2 != (i+j)%2)) ++k0;
const ordinal_type k_end = std::min(p_k,i+j);
const ordinal_type k_inc = symmetric ? 2 : 1;
for (ordinal_type k=k0; k<=k_end; k+=k_inc) {
value_type cijk = (*Cijk_1d[0])(i, j, k);
RCP<node_type> child =
computeCijkLTBNodeBlockLeaf(bo, c1d,
i_ltb->children[i],
j_ltb->children[j],
k_ltb->children[k],
total_order, symmetric,
sum_i + i,
sum_j + j,
sum_k + k,
cijk_base*cijk,
parent_j_equals_k && j == k);
node->children.push_back(child);
node->total_num_entries += child->total_num_entries;
node->total_num_leafs += child->total_num_leafs;
}
}
}
node->my_num_entries = node->children.size();
}
return node;
}
template <typename ordinal_type>
struct FlatLTBSparse3TensorNode {
ordinal_type i_begin, j_begin, k_begin;
ordinal_type p_i, p_j, p_k;
bool parent_j_equals_k;
};
template <typename ordinal_type, typename value_type>
struct FlatLTBSparse3Tensor {
typedef Teuchos::Array< FlatLTBSparse3TensorNode<ordinal_type> > node_array_type;
typedef Teuchos::Array< value_type > cijk_array_type;
typedef typename node_array_type::iterator node_iterator;
typedef typename node_array_type::const_iterator node_const_iterator;
typedef typename cijk_array_type::iterator cijk_iterator;
typedef typename cijk_array_type::const_iterator cijk_const_iterator;
node_array_type node;
cijk_array_type cijk;
bool symmetric;
};
template <typename ordinal_type, typename value_type>
Teuchos::RCP< FlatLTBSparse3Tensor<ordinal_type,value_type> >
computeFlatTripleProductTensorLTB(
const TotalOrderBasis<ordinal_type, value_type,LexographicLess<MultiIndex<ordinal_type> > >& product_basis,
bool symmetric = false) {
#ifdef STOKHOS_TEUCHOS_TIME_MONITOR
TEUCHOS_FUNC_TIME_MONITOR("Stokhos: Flat Triple-Product Tensor Time");
#endif
using Teuchos::RCP;
using Teuchos::rcp;
// Build LTB 3 tensor
typedef LTBSparse3Tensor<ordinal_type, value_type> Cijk_LTB_type;
RCP<Cijk_LTB_type> ltb_tensor =
computeTripleProductTensorLTBBlockLeaf(product_basis, symmetric);
// Create flat LTB 3 tensor
RCP< FlatLTBSparse3Tensor<ordinal_type,value_type> > flat_tensor =
rcp(new FlatLTBSparse3Tensor<ordinal_type,value_type>);
flat_tensor->node.reserve(ltb_tensor->num_leafs());
flat_tensor->cijk.reserve(ltb_tensor->num_entries());
flat_tensor->symmetric = symmetric;
// Fill flat 3 tensor
typedef typename Cijk_LTB_type::CijkNode node_type;
Teuchos::Array< Teuchos::RCP<const node_type> > node_stack;
Teuchos::Array< ordinal_type > index_stack;
node_stack.push_back(ltb_tensor->getHeadNode());
index_stack.push_back(0);
Teuchos::RCP<const node_type> node;
ordinal_type child_index;
while (node_stack.size() > 0) {
node = node_stack.back();
child_index = index_stack.back();
// Leaf
if (node->is_leaf) {
FlatLTBSparse3TensorNode<ordinal_type> leaf;
leaf.i_begin = node->i_begin;
leaf.j_begin = node->j_begin;
leaf.k_begin = node->k_begin;
leaf.p_i = node->p_i;
leaf.p_j = node->p_j;
leaf.p_k = node->p_k;
leaf.parent_j_equals_k = node->parent_j_equals_k;
flat_tensor->node.push_back(leaf);
flat_tensor->cijk.insert(flat_tensor->cijk.end(),
node->values.begin(),
node->values.end());
node_stack.pop_back();
index_stack.pop_back();
}
// More children to process -- process them first
else if (child_index < node->children.size()) {
++index_stack.back();
node = node->children[child_index];
node_stack.push_back(node);
index_stack.push_back(0);
}
// No more children
else {
node_stack.pop_back();
index_stack.pop_back();
}
}
return flat_tensor;
}
template <int max_size, typename ordinal_type, typename value_type>
void
flatLTB3TensorMultiply(
OrthogPolyApprox<ordinal_type,value_type>& c,
const OrthogPolyApprox<ordinal_type,value_type>& a,
const OrthogPolyApprox<ordinal_type,value_type>& b,
const FlatLTBSparse3Tensor<ordinal_type,value_type>& cijk) {
value_type ab[max_size][max_size];
// Set coefficients to 0
c.init(value_type(0));
// Get pointers to coefficients
const value_type *ca = a.coeff();
const value_type *cb = b.coeff();
value_type *cc = c.coeff();
typedef FlatLTBSparse3Tensor<ordinal_type,value_type> cijk_type;
typedef typename cijk_type::node_const_iterator node_iterator;
typedef typename cijk_type::cijk_const_iterator cijk_iterator;
node_iterator ni = cijk.node.begin();
node_iterator ni_end = cijk.node.end();
cijk_iterator ci = cijk.cijk.begin();
for (; ni != ni_end; ++ni) {
value_type *c_block = cc + ni->i_begin;
const value_type *a_j_block = ca + ni->j_begin;
const value_type *b_k_block = cb + ni->k_begin;
const value_type *a_k_block = ca + ni->k_begin;
const value_type *b_j_block = cb + ni->j_begin;
const ordinal_type p_i = ni->p_i;
const ordinal_type p_j = ni->p_j;
const ordinal_type p_k = ni->p_k;
for (ordinal_type j=0; j<=p_j; ++j)
for (ordinal_type k=0; k<=p_k; ++k)
ab[j][k] = a_j_block[j]*b_k_block[k] + a_k_block[k]*b_j_block[j];
for (ordinal_type i=0; i<=p_i; ++i) {
value_type tmp = value_type(0);
for (ordinal_type j=0; j<=p_j; ++j) {
// This is for pyramid instead of brick
// ordinal_type k0 = ni->parent_j_equals_k ? std::max(j,std::abs(i-j)) :
// std::abs(i-j);
// if (cijk.symmetric && (k0%2 != (i+j)%2)) ++k0;
// const ordinal_type k_end = std::min(p_k,i+j);
// const ordinal_type k_inc = cijk.symmetric ? 2 : 1;
ordinal_type k0 = ni->parent_j_equals_k ? j : 0;
if (cijk.symmetric && (k0%2 != (i+j)%2)) ++k0;
const ordinal_type k_end = p_k;
const ordinal_type k_inc = cijk.symmetric ? 2 : 1;
for (ordinal_type k=k0; k<=k_end; k+=k_inc) {
tmp += (*ci)*ab[j][k];
++ci;
}
}
c_block[i] += tmp;
}
}
}
} // namespace Stokhos
// Include template definitions
//#include "Stokhos_LTBSparse3TensorImp.hpp"
#endif // STOKHOS_LTB_SPARSE_3_TENSOR_HPP
|