This file is indexed.

/usr/include/trilinos/Stokhos_RecurrenceBasis.hpp is in libtrilinos-stokhos-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
// @HEADER
// ***********************************************************************
//
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER

#ifndef STOKHOS_RECURRENCEBASIS_HPP
#define STOKHOS_RECURRENCEBASIS_HPP

#include "Stokhos_OneDOrthogPolyBasis.hpp"

namespace Stokhos {

  //! Enumerated type for determining Smolyak growth policies
  enum GrowthPolicy {
    SLOW_GROWTH,
    MODERATE_GROWTH
  };

  /*!
   * \brief Implementation of OneDOrthogPolyBasis based on the general
   * three-term recurrence relationship:
   * \f[
   *    \gamma_{k+1}\psi_{k+1}(x) =
   *       (\delta_k x - \alpha_k)\psi_k(x) - \beta_k\psi_{k-1}(x)
   * \f]
   * for \f$k=0,\dots,P\f$ where \f$\psi_{-1}(x) = 0\f$,
   * \f$\psi_{0}(x) = 1/\gamma_0\f$,
   * and \f$\beta_{0} = 1 = \int d\lambda\f$.
   */
  /*!Derived classes implement the recurrence
   * relationship by implementing computeRecurrenceCoefficients().  If
   * \c normalize = \c true in the constructor, then the recurrence relationship
   * becomes:
   * \f[
   * \sqrt{\frac{\gamma_{k+1}\beta_{k+1}}{\delta_{k+1}\delta_k}} \psi_{k+1}(x) =
   *       (x - \alpha_k/\delta_k)\psi_k(x) -
   *       \sqrt{\frac{\gamma_k\beta_k}{\delta_k\delta_{k-1}}} \psi_{k-1}(x)
   * \f]
   * for \f$k=0,\dots,P\f$ where \f$\psi_{-1}(x) = 0\f$,
   * \f$\psi_{0}(x) = 1/\sqrt{\beta_0}\f$,
   * Note that a three term recurrence can always be defined with
   * \f$\gamma_k = \delta_k = 1\f$ in which case the polynomials are monic.
   * However typical normalizations of some polynomial families (see
   * Stokhos::LegendreBasis) require the extra terms.  Also, the quadrature
   * rule (points and weights) is the same regardless if the polynomials are
   * normalized.  However the normalization can affect other algorithms.
   */
  template <typename ordinal_type, typename value_type>
  class RecurrenceBasis :
    public OneDOrthogPolyBasis<ordinal_type, value_type> {
  public:

    //! Destructor
    virtual ~RecurrenceBasis();

    //! \name Implementation of Stokhos::OneDOrthogPolyBasis methods
    //@{

    //! Return order of basis (largest monomial degree \f$P\f$).
    virtual ordinal_type order() const;

    //! Return total size of basis (given by order() + 1).
    virtual ordinal_type size() const;

    //! Return array storing norm-squared of each basis polynomial
    /*!
     * Entry \f$l\f$ of returned array is given by \f$\langle\psi_l^2\rangle\f$
     * for \f$l=0,\dots,P\f$ where \f$P\f$ is given by order().
     */
    virtual const Teuchos::Array<value_type>& norm_squared() const;

    //! Return norm squared of basis polynomial \c i.
    virtual const value_type& norm_squared(ordinal_type i) const;

    //! Compute triple product tensor
    /*!
     * The \f$(i,j,k)\f$ entry of the tensor \f$C_{ijk}\f$ is given by
     * \f$C_{ijk} = \langle\Psi_i\Psi_j\Psi_k\rangle\f$ where \f$\Psi_l\f$
     * represents basis polynomial \f$l\f$ and \f$i,j=0,\dots,P\f$ where
     * \f$P\f$ is size()-1 and \f$k=0,\dots,p\f$ where \f$p\f$
     * is the supplied \c order.
     *
     * This method is implemented by computing \f$C_{ijk}\f$ using Gaussian
     * quadrature.
     */
    virtual Teuchos::RCP< Stokhos::Dense3Tensor<ordinal_type, value_type> >
    computeTripleProductTensor() const;

    //! Compute triple product tensor
    /*!
     * The \f$(i,j,k)\f$ entry of the tensor \f$C_{ijk}\f$ is given by
     * \f$C_{ijk} = \langle\Psi_i\Psi_j\Psi_k\rangle\f$ where \f$\Psi_l\f$
     * represents basis polynomial \f$l\f$ and \f$i,j=0,\dots,P\f$ where
     * \f$P\f$ is size()-1 and \f$k=0,\dots,p\f$ where \f$p\f$
     * is the supplied \c order.
     *
     * This method is implemented by computing \f$C_{ijk}\f$ using Gaussian
     * quadrature.
     */
    virtual
    Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
    computeSparseTripleProductTensor(ordinal_type order) const;

    //! Compute derivative double product tensor
    /*!
     * The \f$(i,j)\f$ entry of the tensor \f$B_{ij}\f$ is given by
     * \f$B_{ij} = \langle\psi_i'\psi_j\rangle\f$ where \f$\psi_l\f$
     * represents basis polynomial \f$l\f$ and \f$i,j=0,\dots,P\f$ where
     * \f$P\f$ is the order of the basis.
     *
     * This method is implemented by computing \f$B_{ij}\f$ using Gaussian
     * quadrature.
     */
    virtual Teuchos::RCP< Teuchos::SerialDenseMatrix<ordinal_type, value_type> > computeDerivDoubleProductTensor() const;

    //! Evaluate each basis polynomial at given point \c point
    /*!
     * Size of returned array is given by size(), and coefficients are
     * ordered from order 0 up to order order().
     */
    virtual void evaluateBases(const value_type& point,
                               Teuchos::Array<value_type>& basis_pts) const;

    /*!
     * \brief Evaluate basis polynomial given by order \c order at given
     * point \c point.
     */
    virtual value_type evaluate(const value_type& point,
                                ordinal_type order) const;

    //! Print basis to stream \c os
    virtual void print(std::ostream& os) const;

    //! Return string name of basis
    virtual const std::string& getName() const;

    /*!
     * \brief Compute quadrature points, weights, and values of
     * basis polynomials at given set of points \c points.
     */
    /*!
     * \c quad_order specifies the order to which the quadrature should be
     * accurate, not the number of quadrature points.  The number of points
     * is given by (\c quad_order + 1) / 2.   Note however the passed arrays
     * do NOT need to be sized correctly on input as they will be resized
     * appropriately.
     *
     * The quadrature points and weights are computed from the three-term
     * recurrence by solving a tri-diagional symmetric eigenvalue problem
     * (see Gene H. Golub and John H. Welsch, "Calculation of Gauss Quadrature
     * Rules", Mathematics of Computation, Vol. 23, No. 106 (Apr., 1969),
     * pp. 221-230).
     */
    virtual void
    getQuadPoints(ordinal_type quad_order,
                  Teuchos::Array<value_type>& points,
                  Teuchos::Array<value_type>& weights,
                  Teuchos::Array< Teuchos::Array<value_type> >& values) const;

    /*!
     * Return polynomial degree of exactness for a given number of quadrature
     * points.
     */
    virtual ordinal_type quadDegreeOfExactness(ordinal_type n) const;

    //! Evaluate coefficient growth rule for Smolyak-type bases
    virtual ordinal_type coefficientGrowth(ordinal_type n) const;

    //! Evaluate point growth rule for Smolyak-type bases
    virtual ordinal_type pointGrowth(ordinal_type n) const;

    //! Function pointer needed for level_to_order mappings
    typedef typename OneDOrthogPolyBasis<ordinal_type,value_type>::LevelToOrderFnPtr LevelToOrderFnPtr;

    //! Get sparse grid level_to_order mapping function
    /*!
     * Predefined functions are:
     *  webbur::level_to_order_linear_wn Symmetric Gaussian linear growth
     *  webbur::level_to_order_linear_nn Asymmetric Gaussian linear growth
     *  webbur::level_to_order_exp_cc    Clenshaw-Curtis exponential growth
     *  webbur::level_to_order_exp_gp    Gauss-Patterson exponential growth
     *  webbur::level_to_order_exp_hgk   Genz-Keister exponential growth
     *  webbur::level_to_order_exp_f2    Fejer-2 exponential growth
     */
    virtual LevelToOrderFnPtr getSparseGridGrowthRule() const {
      return sparse_grid_growth_rule; }

    //! Set sparse grid rule
    virtual void setSparseGridGrowthRule(LevelToOrderFnPtr ptr) {
      sparse_grid_growth_rule = ptr; }

    //@}

    //! Return recurrence coefficients defined by above formula
    virtual void getRecurrenceCoefficients(Teuchos::Array<value_type>& alpha,
                                           Teuchos::Array<value_type>& beta,
                                           Teuchos::Array<value_type>& delta,
                                           Teuchos::Array<value_type>& gamma) const;

    //! Evaluate basis polynomials and their derivatives at given point \c point
    virtual void evaluateBasesAndDerivatives(const value_type& point,
                                             Teuchos::Array<value_type>& vals,
                                             Teuchos::Array<value_type>& derivs) const;

    //! Set tolerance for zero in quad point generation
    virtual void setQuadZeroTol(value_type tol) {
      quad_zero_tol = tol; }

  protected:

    //! Constructor to be called by derived classes
    /*!
     * \c name is the name for the basis that will be displayed when
     * printing the basis, \c p is the order of the basis, \c normalize
     * indicates whether the basis polynomials should have unit-norm, and
     * \c quad_zero_tol is used to replace any quadrature point within this
     * tolerance with zero (which can help with duplicate removal in sparse
     * grid calculations).
     */
    RecurrenceBasis(const std::string& name, ordinal_type p, bool normalize,
                    GrowthPolicy growth = SLOW_GROWTH);

    //! Copy constructor with specified order
    RecurrenceBasis(ordinal_type p, const RecurrenceBasis& basis);

    //! Compute recurrence coefficients
    /*!
     * Derived classes should implement this method to compute their
     * recurrence coefficients.  \c n is the number of coefficients to compute.
     * Return value indicates whether coefficients correspond to normalized
     * (i.e., orthonormal) polynomials.
     *
     * Note:  Owing to the description above, \c gamma should be an array of
     * length n+1.
     */
    virtual bool
    computeRecurrenceCoefficients(ordinal_type n,
                                  Teuchos::Array<value_type>& alpha,
                                  Teuchos::Array<value_type>& beta,
                                  Teuchos::Array<value_type>& delta,
                                  Teuchos::Array<value_type>& gamma) const = 0;

    //! Setup basis after computing recurrence coefficients
    /*!
     * Derived classes should call this method after computing their recurrence
     * coefficients in their constructor to finish setting up the basis.
     */
    virtual void setup();

    //! Normalize coefficients
    void normalizeRecurrenceCoefficients(
      Teuchos::Array<value_type>& alpha,
      Teuchos::Array<value_type>& beta,
      Teuchos::Array<value_type>& delta,
      Teuchos::Array<value_type>& gamma) const;

  private:

    // Prohibit copying
    RecurrenceBasis(const RecurrenceBasis&);

    // Prohibit Assignment
    RecurrenceBasis& operator=(const RecurrenceBasis& b);

  protected:

    //! Name of basis
    std::string name;

    //! Order of basis
    ordinal_type p;

    //! Normalize basis
    bool normalize;

    //! Smolyak growth policy
    GrowthPolicy growth;

    //! Tolerance for quadrature points near zero
    value_type quad_zero_tol;

    //! Sparse grid growth rule (as determined by Pecos)
    LevelToOrderFnPtr sparse_grid_growth_rule;

    //! Recurrence \f$\alpha\f$ coefficients
    Teuchos::Array<value_type> alpha;

    //! Recurrence \f$\beta\f$ coefficients
    Teuchos::Array<value_type> beta;

    //! Recurrence \f$\delta\f$ coefficients
    Teuchos::Array<value_type> delta;

    //! Recurrence \f$\gamma\f$ coefficients
    Teuchos::Array<value_type> gamma;

    //! Norms
    Teuchos::Array<value_type> norms;

  }; // class RecurrenceBasis

} // Namespace Stokhos

// Include template definitions
#include "Stokhos_RecurrenceBasisImp.hpp"

#endif