This file is indexed.

/usr/include/trilinos/Stokhos_SmolyakBasisImp.hpp is in libtrilinos-stokhos-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
// @HEADER
// ***********************************************************************
// 
//                           Stokhos Package
//                 Copyright (2009) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
// 
// ***********************************************************************
// @HEADER

#include "Teuchos_TimeMonitor.hpp"
#include "Teuchos_TestForException.hpp"

template <typename ordinal_type, typename value_type, typename ordering_type>
template <typename index_set_type>
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
SmolyakBasis(
  const Teuchos::Array< Teuchos::RCP<const OneDOrthogPolyBasis<ordinal_type, value_type> > >& bases_,
  const index_set_type& index_set,
  const value_type& sparse_tol_,
  const ordering_type& coeff_compare) :
  p(0),
  d(bases_.size()),
  sz(0),
  bases(bases_),
  sparse_tol(sparse_tol_),
  max_orders(d),
  basis_set(coeff_compare),
  norms()
{
  
  // Generate index set for the final Smolyak coefficients
  //
  // The Smolyak operator is given by the formula
  //
  // A = \sum_{k\in\K} \bigotimes_{i=1}^d \Delta^i_{k_i}
  //
  // where \Delta^i_0 = 0, \Delta^i_{k_i} = L^i_{k_i} - L^i_{k_i-1},
  // and K is the supplied index set.  This becomes 
  //
  // A = \sum_{k\in\tilde{K}} c(k) \bigotimes_{i=1}^d L^i_{k_i}
  //
  // for some new index set \tilde{K} and coefficient c(k).  Using the
  // formula (cf. G W Wasilkowski and H Wozniakowski, "Explicit cost bounds 
  // of algorithms for multivariate tensor product problems," 
  // Journal of Complexity (11), 1995)
  // 
  // \bigotimes_{i=1}^d \Delta^i_{k_i} = 
  //    \sum_{\alpha\in\Alpha} (-1)^{|\alpha|} 
  //        \bigotimes_{i=1}^d L^i_{k_i-\alpha_i}
  //
  // where \Alpha = {0,1}^d and |\alpha| = \alpha_1 + ... + \alpha_d, we
  // iterate over K and \Alpha, compute k-\alpha and the corresponding
  // coefficient contribution (-1)^{|\alpha|} and store these in a map.  
  // The keys of of this map with non-zero coefficients define
  // \tilde{K} and c(k).
  typedef Stokhos::TensorProductIndexSet<ordinal_type> alpha_set_type; 
  typedef Stokhos::LexographicLess<multiindex_type> index_compare;
  typedef std::map<multiindex_type,ordinal_type,index_compare> index_map_type;
  ordinal_type dim = index_set.dimension();
  alpha_set_type alpha_set(dim, 1);
  typename alpha_set_type::iterator alpha_begin = alpha_set.begin();
  typename alpha_set_type::iterator alpha_end = alpha_set.end();
  typename index_set_type::iterator index_iterator = index_set.begin();
  typename index_set_type::iterator index_end = index_set.end();
  multiindex_type diff(dim);
  index_map_type index_map;
  for (; index_iterator != index_end; ++index_iterator) {
    for (typename alpha_set_type::iterator alpha = alpha_begin; 
	 alpha != alpha_end; ++alpha) {
      bool valid_index = true;
      for (ordinal_type i=0; i<dim; ++i) {
	diff[i] = (*index_iterator)[i] - (*alpha)[i];
	if (diff[i] < 0) {
	  valid_index = false;
	  break;
	}
      }
      if (valid_index) {
	ordinal_type alpha_order = alpha->order();
	ordinal_type val;	  
	if (alpha_order % 2 == 0)
	  val = 1;
	else
	  val = -1;
	typename index_map_type::iterator index_map_iterator =
	  index_map.find(diff);
	if (index_map_iterator == index_map.end())
	  index_map[diff] = val;
	else
	  index_map_iterator->second += val;
      }
    }
  }

  // Generate tensor product bases
  typename index_map_type::iterator index_map_iterator = index_map.begin();
  typename index_map_type::iterator index_map_end = index_map.end();
  for (; index_map_iterator != index_map_end; ++index_map_iterator) {
	
    // Skip indices with zero coefficient
    if (index_map_iterator->second == 0)
      continue;

    // Apply growth rule to cofficient multi-index
    multiindex_type coeff_growth_index(dim);
    for (ordinal_type i=0; i<dim; ++i) {
      coeff_growth_index[i] = 
	bases[i]->coefficientGrowth(index_map_iterator->first[i]);
    }

    // Build tensor product basis for given index
    Teuchos::RCP<tensor_product_basis_type> tp = 
      Teuchos::rcp(new tensor_product_basis_type(
		     bases, sparse_tol, coeff_growth_index));

    // Include coefficients in union over all sets
    for (ordinal_type i=0; i<tp->size(); ++i)
      basis_set[tp->term(i)] = ordinal_type(0);

    tp_bases.push_back(tp);
    sm_pred.tp_preds.push_back( 
      TensorProductPredicate<ordinal_type>(coeff_growth_index) );
    smolyak_coeffs.push_back(index_map_iterator->second);
  }
  sz = basis_set.size();
 
  // Generate linear odering of coefficients
  ordinal_type idx = 0;
  basis_map.resize(sz);
  for (typename coeff_set_type::iterator i = basis_set.begin(); 
       i != basis_set.end(); 
       ++i) {
    i->second = idx;
    basis_map[idx] = i->first;
    ++idx;
  }

  // Compute max coefficient orders
  for (ordinal_type i=0; i<sz; ++i) {
    for (ordinal_type j=0; j<dim; ++j)
      if (basis_map[i][j] > max_orders[j])
	max_orders[j] = basis_map[i][j];
  }

  // Resize bases to make sure they are high enough order
  for (ordinal_type i=0; i<dim; i++)
    if (bases[i]->order() < max_orders[i])
      bases[i] = bases[i]->cloneWithOrder(max_orders[i]);

  // Compute largest order
  p = 0;
  for (ordinal_type i=0; i<d; i++) {
    if (max_orders[i] > p)
      p = max_orders[i];
  }
  
  // Compute norms
  norms.resize(sz);
  value_type nrm;
  for (ordinal_type k=0; k<sz; k++) {
    nrm = value_type(1.0);
    for (ordinal_type i=0; i<d; i++)
      nrm = nrm * bases[i]->norm_squared(basis_map[k][i]);
    norms[k] = nrm;
  }

  // Create name
  name = "Smolyak basis (";
  for (ordinal_type i=0; i<d-1; i++)
    name += bases[i]->getName() + ", ";
  name += bases[d-1]->getName() + ")";

  // Allocate array for basis evaluation
  basis_eval_tmp.resize(d);
  for (ordinal_type j=0; j<d; j++)
    basis_eval_tmp[j].resize(max_orders[j]+1);
}

template <typename ordinal_type, typename value_type, typename ordering_type>
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
~SmolyakBasis()
{
}

template <typename ordinal_type, typename value_type, typename ordering_type>
ordinal_type
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
order() const
{
  return p;
}

template <typename ordinal_type, typename value_type, typename ordering_type>
ordinal_type
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
dimension() const
{
  return d;
}

template <typename ordinal_type, typename value_type, typename ordering_type>
ordinal_type
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
size() const
{
  return sz;
}

template <typename ordinal_type, typename value_type, typename ordering_type>
const Teuchos::Array<value_type>&
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
norm_squared() const
{
  return norms;
}

template <typename ordinal_type, typename value_type, typename ordering_type>
const value_type&
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
norm_squared(ordinal_type i) const
{
  return norms[i];
}

template <typename ordinal_type, typename value_type, typename ordering_type>
Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
computeTripleProductTensor() const
{
#ifdef STOKHOS_TEUCHOS_TIME_MONITOR
  TEUCHOS_FUNC_TIME_MONITOR("Stokhos: Total Triple-Product Tensor Fill Time");
#endif

  return ProductBasisUtils::computeTripleProductTensor(
    bases, basis_set, basis_map, sm_pred, sm_pred, sparse_tol);
}

template <typename ordinal_type, typename value_type, typename ordering_type>
Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
computeLinearTripleProductTensor() const
{
#ifdef STOKHOS_TEUCHOS_TIME_MONITOR
  TEUCHOS_FUNC_TIME_MONITOR("Stokhos: Total Triple-Product Tensor Fill Time");
#endif

  SmolyakPredicate< TotalOrderPredicate<ordinal_type> > k_pred;
  for (ordinal_type i=0; i<sm_pred.tp_preds.size(); ++i) {
    k_pred.tp_preds.push_back( 
      TotalOrderPredicate<ordinal_type>(1, sm_pred.tp_preds[i].orders) );
  }

  return ProductBasisUtils::computeTripleProductTensor(
    bases, basis_set, basis_map, sm_pred, k_pred, sparse_tol);
}

template <typename ordinal_type, typename value_type, typename ordering_type>
value_type
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
evaluateZero(ordinal_type i) const
{
  // z = psi_{i_1}(0) * ... * psi_{i_d}(0) where i_1,...,i_d are the basis
  // terms for coefficient i
  value_type z = value_type(1.0);
  for (ordinal_type j=0; j<d; j++)
    z = z * bases[j]->evaluate(value_type(0.0), basis_map[i][j]);

  return z;
}

template <typename ordinal_type, typename value_type, typename ordering_type>
void
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
evaluateBases(const Teuchos::ArrayView<const value_type>& point,
	      Teuchos::Array<value_type>& basis_vals) const
{
  for (ordinal_type j=0; j<d; j++)
    bases[j]->evaluateBases(point[j], basis_eval_tmp[j]);

  // Only evaluate basis upto number of terms included in basis_pts
  for (ordinal_type i=0; i<sz; i++) {
    value_type t = value_type(1.0);
    for (ordinal_type j=0; j<d; j++)
      t *= basis_eval_tmp[j][basis_map[i][j]];
    basis_vals[i] = t;
  }
}

template <typename ordinal_type, typename value_type, typename ordering_type>
void
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
print(std::ostream& os) const
{
  os << "Smolyak basis of order " << p << ", dimension " << d 
     << ", and size " << sz << ".  Component bases:\n";
  for (ordinal_type i=0; i<d; i++)
    os << *bases[i];
  os << "Basis vector norms (squared):\n\t";
  for (ordinal_type i=0; i<static_cast<ordinal_type>(norms.size()); i++)
    os << norms[i] << " ";
  os << "\n";
}

template <typename ordinal_type, typename value_type, typename ordering_type>
const Stokhos::MultiIndex<ordinal_type>&
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
term(ordinal_type i) const
{
  return basis_map[i];
}

template <typename ordinal_type, typename value_type, typename ordering_type>
ordinal_type
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
index(const Stokhos::MultiIndex<ordinal_type>& term) const
{
  typename coeff_set_type::const_iterator it = basis_set.find(term);
  TEUCHOS_TEST_FOR_EXCEPTION(it == basis_set.end(), std::logic_error,
			     "Invalid term " << term);
  return it->second;
}

template <typename ordinal_type, typename value_type, typename ordering_type>
const std::string&
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
getName() const
{
  return name;
}

template <typename ordinal_type, typename value_type, typename ordering_type>
Teuchos::Array< Teuchos::RCP<const Stokhos::OneDOrthogPolyBasis<ordinal_type, value_type> > >
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
getCoordinateBases() const
{
  return bases;
}

template <typename ordinal_type, typename value_type, typename ordering_type>
Stokhos::MultiIndex<ordinal_type>
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
getMaxOrders() const
{
  return max_orders;
}