/usr/include/trilinos/Stokhos_SmolyakBasisImp.hpp is in libtrilinos-stokhos-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 | // @HEADER
// ***********************************************************************
//
// Stokhos Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER
#include "Teuchos_TimeMonitor.hpp"
#include "Teuchos_TestForException.hpp"
template <typename ordinal_type, typename value_type, typename ordering_type>
template <typename index_set_type>
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
SmolyakBasis(
const Teuchos::Array< Teuchos::RCP<const OneDOrthogPolyBasis<ordinal_type, value_type> > >& bases_,
const index_set_type& index_set,
const value_type& sparse_tol_,
const ordering_type& coeff_compare) :
p(0),
d(bases_.size()),
sz(0),
bases(bases_),
sparse_tol(sparse_tol_),
max_orders(d),
basis_set(coeff_compare),
norms()
{
// Generate index set for the final Smolyak coefficients
//
// The Smolyak operator is given by the formula
//
// A = \sum_{k\in\K} \bigotimes_{i=1}^d \Delta^i_{k_i}
//
// where \Delta^i_0 = 0, \Delta^i_{k_i} = L^i_{k_i} - L^i_{k_i-1},
// and K is the supplied index set. This becomes
//
// A = \sum_{k\in\tilde{K}} c(k) \bigotimes_{i=1}^d L^i_{k_i}
//
// for some new index set \tilde{K} and coefficient c(k). Using the
// formula (cf. G W Wasilkowski and H Wozniakowski, "Explicit cost bounds
// of algorithms for multivariate tensor product problems,"
// Journal of Complexity (11), 1995)
//
// \bigotimes_{i=1}^d \Delta^i_{k_i} =
// \sum_{\alpha\in\Alpha} (-1)^{|\alpha|}
// \bigotimes_{i=1}^d L^i_{k_i-\alpha_i}
//
// where \Alpha = {0,1}^d and |\alpha| = \alpha_1 + ... + \alpha_d, we
// iterate over K and \Alpha, compute k-\alpha and the corresponding
// coefficient contribution (-1)^{|\alpha|} and store these in a map.
// The keys of of this map with non-zero coefficients define
// \tilde{K} and c(k).
typedef Stokhos::TensorProductIndexSet<ordinal_type> alpha_set_type;
typedef Stokhos::LexographicLess<multiindex_type> index_compare;
typedef std::map<multiindex_type,ordinal_type,index_compare> index_map_type;
ordinal_type dim = index_set.dimension();
alpha_set_type alpha_set(dim, 1);
typename alpha_set_type::iterator alpha_begin = alpha_set.begin();
typename alpha_set_type::iterator alpha_end = alpha_set.end();
typename index_set_type::iterator index_iterator = index_set.begin();
typename index_set_type::iterator index_end = index_set.end();
multiindex_type diff(dim);
index_map_type index_map;
for (; index_iterator != index_end; ++index_iterator) {
for (typename alpha_set_type::iterator alpha = alpha_begin;
alpha != alpha_end; ++alpha) {
bool valid_index = true;
for (ordinal_type i=0; i<dim; ++i) {
diff[i] = (*index_iterator)[i] - (*alpha)[i];
if (diff[i] < 0) {
valid_index = false;
break;
}
}
if (valid_index) {
ordinal_type alpha_order = alpha->order();
ordinal_type val;
if (alpha_order % 2 == 0)
val = 1;
else
val = -1;
typename index_map_type::iterator index_map_iterator =
index_map.find(diff);
if (index_map_iterator == index_map.end())
index_map[diff] = val;
else
index_map_iterator->second += val;
}
}
}
// Generate tensor product bases
typename index_map_type::iterator index_map_iterator = index_map.begin();
typename index_map_type::iterator index_map_end = index_map.end();
for (; index_map_iterator != index_map_end; ++index_map_iterator) {
// Skip indices with zero coefficient
if (index_map_iterator->second == 0)
continue;
// Apply growth rule to cofficient multi-index
multiindex_type coeff_growth_index(dim);
for (ordinal_type i=0; i<dim; ++i) {
coeff_growth_index[i] =
bases[i]->coefficientGrowth(index_map_iterator->first[i]);
}
// Build tensor product basis for given index
Teuchos::RCP<tensor_product_basis_type> tp =
Teuchos::rcp(new tensor_product_basis_type(
bases, sparse_tol, coeff_growth_index));
// Include coefficients in union over all sets
for (ordinal_type i=0; i<tp->size(); ++i)
basis_set[tp->term(i)] = ordinal_type(0);
tp_bases.push_back(tp);
sm_pred.tp_preds.push_back(
TensorProductPredicate<ordinal_type>(coeff_growth_index) );
smolyak_coeffs.push_back(index_map_iterator->second);
}
sz = basis_set.size();
// Generate linear odering of coefficients
ordinal_type idx = 0;
basis_map.resize(sz);
for (typename coeff_set_type::iterator i = basis_set.begin();
i != basis_set.end();
++i) {
i->second = idx;
basis_map[idx] = i->first;
++idx;
}
// Compute max coefficient orders
for (ordinal_type i=0; i<sz; ++i) {
for (ordinal_type j=0; j<dim; ++j)
if (basis_map[i][j] > max_orders[j])
max_orders[j] = basis_map[i][j];
}
// Resize bases to make sure they are high enough order
for (ordinal_type i=0; i<dim; i++)
if (bases[i]->order() < max_orders[i])
bases[i] = bases[i]->cloneWithOrder(max_orders[i]);
// Compute largest order
p = 0;
for (ordinal_type i=0; i<d; i++) {
if (max_orders[i] > p)
p = max_orders[i];
}
// Compute norms
norms.resize(sz);
value_type nrm;
for (ordinal_type k=0; k<sz; k++) {
nrm = value_type(1.0);
for (ordinal_type i=0; i<d; i++)
nrm = nrm * bases[i]->norm_squared(basis_map[k][i]);
norms[k] = nrm;
}
// Create name
name = "Smolyak basis (";
for (ordinal_type i=0; i<d-1; i++)
name += bases[i]->getName() + ", ";
name += bases[d-1]->getName() + ")";
// Allocate array for basis evaluation
basis_eval_tmp.resize(d);
for (ordinal_type j=0; j<d; j++)
basis_eval_tmp[j].resize(max_orders[j]+1);
}
template <typename ordinal_type, typename value_type, typename ordering_type>
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
~SmolyakBasis()
{
}
template <typename ordinal_type, typename value_type, typename ordering_type>
ordinal_type
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
order() const
{
return p;
}
template <typename ordinal_type, typename value_type, typename ordering_type>
ordinal_type
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
dimension() const
{
return d;
}
template <typename ordinal_type, typename value_type, typename ordering_type>
ordinal_type
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
size() const
{
return sz;
}
template <typename ordinal_type, typename value_type, typename ordering_type>
const Teuchos::Array<value_type>&
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
norm_squared() const
{
return norms;
}
template <typename ordinal_type, typename value_type, typename ordering_type>
const value_type&
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
norm_squared(ordinal_type i) const
{
return norms[i];
}
template <typename ordinal_type, typename value_type, typename ordering_type>
Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
computeTripleProductTensor() const
{
#ifdef STOKHOS_TEUCHOS_TIME_MONITOR
TEUCHOS_FUNC_TIME_MONITOR("Stokhos: Total Triple-Product Tensor Fill Time");
#endif
return ProductBasisUtils::computeTripleProductTensor(
bases, basis_set, basis_map, sm_pred, sm_pred, sparse_tol);
}
template <typename ordinal_type, typename value_type, typename ordering_type>
Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
computeLinearTripleProductTensor() const
{
#ifdef STOKHOS_TEUCHOS_TIME_MONITOR
TEUCHOS_FUNC_TIME_MONITOR("Stokhos: Total Triple-Product Tensor Fill Time");
#endif
SmolyakPredicate< TotalOrderPredicate<ordinal_type> > k_pred;
for (ordinal_type i=0; i<sm_pred.tp_preds.size(); ++i) {
k_pred.tp_preds.push_back(
TotalOrderPredicate<ordinal_type>(1, sm_pred.tp_preds[i].orders) );
}
return ProductBasisUtils::computeTripleProductTensor(
bases, basis_set, basis_map, sm_pred, k_pred, sparse_tol);
}
template <typename ordinal_type, typename value_type, typename ordering_type>
value_type
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
evaluateZero(ordinal_type i) const
{
// z = psi_{i_1}(0) * ... * psi_{i_d}(0) where i_1,...,i_d are the basis
// terms for coefficient i
value_type z = value_type(1.0);
for (ordinal_type j=0; j<d; j++)
z = z * bases[j]->evaluate(value_type(0.0), basis_map[i][j]);
return z;
}
template <typename ordinal_type, typename value_type, typename ordering_type>
void
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
evaluateBases(const Teuchos::ArrayView<const value_type>& point,
Teuchos::Array<value_type>& basis_vals) const
{
for (ordinal_type j=0; j<d; j++)
bases[j]->evaluateBases(point[j], basis_eval_tmp[j]);
// Only evaluate basis upto number of terms included in basis_pts
for (ordinal_type i=0; i<sz; i++) {
value_type t = value_type(1.0);
for (ordinal_type j=0; j<d; j++)
t *= basis_eval_tmp[j][basis_map[i][j]];
basis_vals[i] = t;
}
}
template <typename ordinal_type, typename value_type, typename ordering_type>
void
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
print(std::ostream& os) const
{
os << "Smolyak basis of order " << p << ", dimension " << d
<< ", and size " << sz << ". Component bases:\n";
for (ordinal_type i=0; i<d; i++)
os << *bases[i];
os << "Basis vector norms (squared):\n\t";
for (ordinal_type i=0; i<static_cast<ordinal_type>(norms.size()); i++)
os << norms[i] << " ";
os << "\n";
}
template <typename ordinal_type, typename value_type, typename ordering_type>
const Stokhos::MultiIndex<ordinal_type>&
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
term(ordinal_type i) const
{
return basis_map[i];
}
template <typename ordinal_type, typename value_type, typename ordering_type>
ordinal_type
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
index(const Stokhos::MultiIndex<ordinal_type>& term) const
{
typename coeff_set_type::const_iterator it = basis_set.find(term);
TEUCHOS_TEST_FOR_EXCEPTION(it == basis_set.end(), std::logic_error,
"Invalid term " << term);
return it->second;
}
template <typename ordinal_type, typename value_type, typename ordering_type>
const std::string&
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
getName() const
{
return name;
}
template <typename ordinal_type, typename value_type, typename ordering_type>
Teuchos::Array< Teuchos::RCP<const Stokhos::OneDOrthogPolyBasis<ordinal_type, value_type> > >
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
getCoordinateBases() const
{
return bases;
}
template <typename ordinal_type, typename value_type, typename ordering_type>
Stokhos::MultiIndex<ordinal_type>
Stokhos::SmolyakBasis<ordinal_type, value_type, ordering_type>::
getMaxOrders() const
{
return max_orders;
}
|