/usr/include/trilinos/Stokhos_TotalOrderBasis.hpp is in libtrilinos-stokhos-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 | // @HEADER
// ***********************************************************************
//
// Stokhos Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER
#ifndef STOKHOS_TOTAL_ORDER_BASIS_HPP
#define STOKHOS_TOTAL_ORDER_BASIS_HPP
#include "Teuchos_RCP.hpp"
#include "Stokhos_ProductBasis.hpp"
#include "Stokhos_OneDOrthogPolyBasis.hpp"
#include "Stokhos_ProductBasisUtils.hpp"
namespace Stokhos {
/*!
* \brief Multivariate orthogonal polynomial basis generated from a
* total order tensor product of univariate polynomials.
*/
/*!
* The multivariate polynomials are given by
* \f[
* \Psi_i(x) = \psi_{i_1}(x_1)\dots\psi_{i_d}(x_d)
* \f]
* where \f$d\f$ is the dimension of the basis and \f$i_j\leq p_j\f$,
* where \f$p_j\f$ is the order of the $j$th basis.
*/
template <typename ordinal_type, typename value_type,
typename coeff_compare_type =
TotalOrderLess<MultiIndex<ordinal_type> > >
class TotalOrderBasis :
public ProductBasis<ordinal_type,value_type> {
public:
//! Constructor
/*!
* \param bases array of 1-D coordinate bases
* \param sparse_tol tolerance used to drop terms in sparse triple-product
* tensors
*/
TotalOrderBasis(
const Teuchos::Array< Teuchos::RCP<const OneDOrthogPolyBasis<ordinal_type,
value_type> > >& bases,
const value_type& sparse_tol = 1.0e-12,
const coeff_compare_type& coeff_compare = coeff_compare_type());
//! Destructor
virtual ~TotalOrderBasis();
//! \name Implementation of Stokhos::OrthogPolyBasis methods
//@{
//! Return order of basis
ordinal_type order() const;
//! Return dimension of basis
ordinal_type dimension() const;
//! Return total size of basis
virtual ordinal_type size() const;
//! Return array storing norm-squared of each basis polynomial
/*!
* Entry \f$l\f$ of returned array is given by \f$\langle\Psi_l^2\rangle\f$
* for \f$l=0,\dots,P\f$ where \f$P\f$ is size()-1.
*/
virtual const Teuchos::Array<value_type>& norm_squared() const;
//! Return norm squared of basis polynomial \c i.
virtual const value_type& norm_squared(ordinal_type i) const;
//! Compute triple product tensor
/*!
* The \f$(i,j,k)\f$ entry of the tensor \f$C_{ijk}\f$ is given by
* \f$C_{ijk} = \langle\Psi_i\Psi_j\Psi_k\rangle\f$ where \f$\Psi_l\f$
* represents basis polynomial \f$l\f$ and \f$i,j,k=0,\dots,P\f$ where
* \f$P\f$ is size()-1.
*/
virtual
Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
computeTripleProductTensor() const;
//! Compute linear triple product tensor where k = 0,1,..,d
virtual
Teuchos::RCP< Stokhos::Sparse3Tensor<ordinal_type, value_type> >
computeLinearTripleProductTensor() const;
//! Evaluate basis polynomial \c i at zero
virtual value_type evaluateZero(ordinal_type i) const;
//! Evaluate basis polynomials at given point \c point
/*!
* Size of returned array is given by size(), and coefficients are
* ordered from order 0 up to size size()-1.
*/
virtual void evaluateBases(
const Teuchos::ArrayView<const value_type>& point,
Teuchos::Array<value_type>& basis_vals) const;
//! Print basis to stream \c os
virtual void print(std::ostream& os) const;
//! Return string name of basis
virtual const std::string& getName() const;
//@}
//! \name Implementation of Stokhos::ProductBasis methods
//@{
//! Get orders of each coordinate polynomial given an index \c i
/*!
* The returned array is of size \f$d\f$, where \f$d\f$ is the dimension of
* the basis, and entry \f$l\f$ is given by \f$i_l\f$ where
* \f$\Psi_i(x) = \psi_{i_1}(x_1)\dots\psi_{i_d}(x_d)\f$.
*/
virtual const MultiIndex<ordinal_type>& term(ordinal_type i) const;
//! Get index of the multivariate polynomial given orders of each coordinate
/*!
* Given the array \c term storing \f$i_1,\dots,\i_d\f$, returns the index
* \f$i\f$ such that \f$\Psi_i(x) = \psi_{i_1}(x_1)\dots\psi_{i_d}(x_d)\f$.
*/
virtual ordinal_type index(const MultiIndex<ordinal_type>& term) const;
//! Return coordinate bases
/*!
* Array is of size dimension().
*/
Teuchos::Array< Teuchos::RCP<const OneDOrthogPolyBasis<ordinal_type,
value_type> > >
getCoordinateBases() const;
//! Return maximum order allowable for each coordinate basis
virtual MultiIndex<ordinal_type> getMaxOrders() const;
//@}
private:
// Prohibit copying
TotalOrderBasis(const TotalOrderBasis&);
// Prohibit Assignment
TotalOrderBasis& operator=(const TotalOrderBasis& b);
protected:
typedef MultiIndex<ordinal_type> coeff_type;
typedef std::map<coeff_type,ordinal_type,coeff_compare_type> coeff_set_type;
typedef Teuchos::Array<coeff_type> coeff_map_type;
//! Name of basis
std::string name;
//! Total order of basis
ordinal_type p;
//! Total dimension of basis
ordinal_type d;
//! Total size of basis
ordinal_type sz;
//! Array of bases
Teuchos::Array< Teuchos::RCP<const OneDOrthogPolyBasis<ordinal_type, value_type> > > bases;
//! Tolerance for computing sparse Cijk
value_type sparse_tol;
//! Maximum orders for each dimension
coeff_type max_orders;
//! Basis set
coeff_set_type basis_set;
//! Basis map
coeff_map_type basis_map;
//! Norms
Teuchos::Array<value_type> norms;
//! Temporary array used in basis evaluation
mutable Teuchos::Array< Teuchos::Array<value_type> > basis_eval_tmp;
}; // class TotalOrderBasis
// An approach for building a sparse 3-tensor only for lexicographically
// ordered total order basis
// To-do:
// * Remove the n_choose_k() calls
// * Remove the loops in the Cijk_1D_Iterator::increment() functions
// * Store the 1-D Cijk tensors in a compressed format and eliminate
// the implicit searches with getValue()
// * Instead of looping over (i,j,k) multi-indices we could just store
// the 1-D Cijk tensors as an array of (i,j,k,c) tuples.
template <typename ordinal_type,
typename value_type>
Teuchos::RCP< Sparse3Tensor<ordinal_type, value_type> >
computeTripleProductTensorLTO(
const TotalOrderBasis<ordinal_type, value_type,LexographicLess<MultiIndex<ordinal_type> > >& product_basis,
bool symmetric = false) {
#ifdef STOKHOS_TEUCHOS_TIME_MONITOR
TEUCHOS_FUNC_TIME_MONITOR("Stokhos: Total Triple-Product Tensor Time");
#endif
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::Array;
typedef MultiIndex<ordinal_type> coeff_type;
const Array< RCP<const OneDOrthogPolyBasis<ordinal_type, value_type> > >& bases = product_basis.getCoordinateBases();
ordinal_type d = bases.size();
//ordinal_type p = product_basis.order();
Array<ordinal_type> basis_orders(d);
for (int i=0; i<d; ++i)
basis_orders[i] = bases[i]->order();
// Create 1-D triple products
Array< RCP<Sparse3Tensor<ordinal_type,value_type> > > Cijk_1d(d);
for (ordinal_type i=0; i<d; i++) {
Cijk_1d[i] =
bases[i]->computeSparseTripleProductTensor(bases[i]->order()+1);
}
RCP< Sparse3Tensor<ordinal_type, value_type> > Cijk =
rcp(new Sparse3Tensor<ordinal_type, value_type>);
// Create i, j, k iterators for each dimension
typedef ProductBasisUtils::Cijk_1D_Iterator<ordinal_type> Cijk_Iterator;
Array<Cijk_Iterator> Cijk_1d_iterators(d);
coeff_type terms_i(d,0), terms_j(d,0), terms_k(d,0);
Array<ordinal_type> sum_i(d,0), sum_j(d,0), sum_k(d,0);
for (ordinal_type dim=0; dim<d; dim++) {
Cijk_1d_iterators[dim] = Cijk_Iterator(bases[dim]->order(), symmetric);
}
ordinal_type I = 0;
ordinal_type J = 0;
ordinal_type K = 0;
ordinal_type cnt = 0;
bool stop = false;
while (!stop) {
// Fill out terms from 1-D iterators
for (ordinal_type dim=0; dim<d; ++dim) {
terms_i[dim] = Cijk_1d_iterators[dim].i;
terms_j[dim] = Cijk_1d_iterators[dim].j;
terms_k[dim] = Cijk_1d_iterators[dim].k;
}
// Compute global I,J,K
/*
ordinal_type II = lexicographicMapping(terms_i, p);
ordinal_type JJ = lexicographicMapping(terms_j, p);
ordinal_type KK = lexicographicMapping(terms_k, p);
if (I != II || J != JJ || K != KK) {
std::cout << "DIFF!!!" << std::endl;
std::cout << terms_i << ": I = " << I << ", II = " << II << std::endl;
std::cout << terms_j << ": J = " << J << ", JJ = " << JJ << std::endl;
std::cout << terms_k << ": K = " << K << ", KK = " << KK << std::endl;
}
*/
// Compute triple-product value
value_type c = value_type(1.0);
for (ordinal_type dim=0; dim<d; dim++) {
c *= Cijk_1d[dim]->getValue(Cijk_1d_iterators[dim].i,
Cijk_1d_iterators[dim].j,
Cijk_1d_iterators[dim].k);
}
TEUCHOS_TEST_FOR_EXCEPTION(
std::abs(c) <= 1.0e-12,
std::logic_error,
"Got 0 triple product value " << c
<< ", I = " << I << " = " << terms_i
<< ", J = " << J << " = " << terms_j
<< ", K = " << K << " = " << terms_k
<< std::endl);
// Add term to global Cijk
Cijk->add_term(I,J,K,c);
// Cijk->add_term(I,K,J,c);
// Cijk->add_term(J,I,K,c);
// Cijk->add_term(J,K,I,c);
// Cijk->add_term(K,I,J,c);
// Cijk->add_term(K,J,I,c);
// Increment iterators to the next valid term
ordinal_type cdim = d-1;
bool inc = true;
while (inc && cdim >= 0) {
ordinal_type delta_i, delta_j, delta_k;
bool more =
Cijk_1d_iterators[cdim].increment(delta_i, delta_j, delta_k);
// Update number of terms used for computing global index
if (cdim == d-1) {
I += delta_i;
J += delta_j;
K += delta_k;
}
else {
if (delta_i > 0) {
for (ordinal_type ii=0; ii<delta_i; ++ii)
I +=
Stokhos::n_choose_k(
basis_orders[cdim+1]-sum_i[cdim] -
(Cijk_1d_iterators[cdim].i-ii)+d-cdim,
d-cdim-1);
}
else {
for (ordinal_type ii=0; ii<-delta_i; ++ii)
I -=
Stokhos::n_choose_k(
basis_orders[cdim+1]-sum_i[cdim] -
(Cijk_1d_iterators[cdim].i+ii)+d-cdim-1,
d-cdim-1);
}
if (delta_j > 0) {
for (ordinal_type jj=0; jj<delta_j; ++jj)
J +=
Stokhos::n_choose_k(
basis_orders[cdim+1]-sum_j[cdim] -
(Cijk_1d_iterators[cdim].j-jj)+d-cdim,
d-cdim-1);
}
else {
for (ordinal_type jj=0; jj<-delta_j; ++jj)
J -=
Stokhos::n_choose_k(
basis_orders[cdim+1]-sum_j[cdim] -
(Cijk_1d_iterators[cdim].j+jj)+d-cdim-1,
d-cdim-1);
}
if (delta_k > 0) {
for (ordinal_type kk=0; kk<delta_k; ++kk)
K +=
Stokhos::n_choose_k(
basis_orders[cdim+1]-sum_k[cdim] -
(Cijk_1d_iterators[cdim].k-kk)+d-cdim,
d-cdim-1);
}
else {
for (ordinal_type kk=0; kk<-delta_k; ++kk)
K -=
Stokhos::n_choose_k(
basis_orders[cdim+1]-sum_k[cdim] -
(Cijk_1d_iterators[cdim].k+kk)+d-cdim-1,
d-cdim-1);
}
}
if (!more) {
// If no more terms in this dimension, go to previous one
--cdim;
}
else {
// cdim has more terms, so reset iterators for all dimensions > cdim
// adjusting max order based on sum of i,j,k for previous dims
inc = false;
for (ordinal_type dim=cdim+1; dim<d; ++dim) {
// Update sums of orders for previous dimension
sum_i[dim] = sum_i[dim-1] + Cijk_1d_iterators[dim-1].i;
sum_j[dim] = sum_j[dim-1] + Cijk_1d_iterators[dim-1].j;
sum_k[dim] = sum_k[dim-1] + Cijk_1d_iterators[dim-1].k;
// Reset iterator for this dimension
Cijk_1d_iterators[dim] =
Cijk_Iterator(basis_orders[dim]-sum_i[dim],
basis_orders[dim]-sum_j[dim],
basis_orders[dim]-sum_k[dim],
symmetric);
}
}
}
if (cdim < 0)
stop = true;
cnt++;
}
Cijk->fillComplete();
return Cijk;
}
} // Namespace Stokhos
// Include template definitions
#include "Stokhos_TotalOrderBasisImp.hpp"
#endif
|