/usr/include/trilinos/Stokhos_Tpetra_Utilities.hpp is in libtrilinos-stokhos-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | // @HEADER
// ***********************************************************************
//
// Stokhos Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER
#ifndef STOKHOS_TPETRA_UTILITIES_HPP
#define STOKHOS_TPETRA_UTILITIES_HPP
#include "Stokhos_Tpetra_UQ_PCE.hpp"
#include "Stokhos_Tpetra_MP_Vector.hpp"
#include "Tpetra_CrsMatrix.hpp"
namespace Stokhos {
//! Get mean values matrix for mean-based preconditioning
/*! Default implementation for all scalar types where "mean" is the same
* as the scalar type.
*/
template <class ViewType>
class GetMeanValsFunc {
public:
typedef ViewType MeanViewType;
typedef typename ViewType::execution_space execution_space;
typedef typename ViewType::size_type size_type;
GetMeanValsFunc(const ViewType& vals) {
mean_vals = ViewType("mean-values", vals.dimension_0());
Kokkos::deep_copy( mean_vals, vals );
}
MeanViewType getMeanValues() const { return mean_vals; }
private:
MeanViewType mean_vals;
};
//! Get mean values matrix for mean-based preconditioning
/*! Specialization for Sacado::UQ::PCE
*/
template <class Storage, class ... P>
class GetMeanValsFunc< Kokkos::View< Sacado::UQ::PCE<Storage>*,
P... > > {
public:
typedef Sacado::UQ::PCE<Storage> Scalar;
typedef Kokkos::View< Scalar*, P... > ViewType;
typedef ViewType MeanViewType;
typedef typename ViewType::execution_space execution_space;
typedef typename ViewType::size_type size_type;
GetMeanValsFunc(const ViewType& vals_) : vals(vals_) {
const size_type nnz = vals.dimension_0();
typename Scalar::cijk_type mean_cijk =
Stokhos::create_mean_based_product_tensor<execution_space, typename Storage::ordinal_type, typename Storage::value_type>();
mean_vals = Kokkos::make_view<ViewType>("mean-values", mean_cijk, nnz, 1);
Kokkos::parallel_for( nnz, *this );
}
KOKKOS_INLINE_FUNCTION
void operator() (const size_type i) const {
mean_vals(i) = vals(i).fastAccessCoeff(0);
}
MeanViewType getMeanValues() const { return mean_vals; }
private:
MeanViewType mean_vals;
ViewType vals;
};
//! Get mean values matrix for mean-based preconditioning
/*! Specialization for Sacado::MP::Vector
*/
template <class Storage, class ... P>
class GetMeanValsFunc< Kokkos::View< Sacado::MP::Vector<Storage>*,
P... > > {
public:
typedef Sacado::MP::Vector<Storage> Scalar;
typedef Kokkos::View< Scalar*, P... > ViewType;
typedef ViewType MeanViewType;
typedef typename ViewType::execution_space execution_space;
typedef typename ViewType::size_type size_type;
GetMeanValsFunc(const ViewType& vals_) :
vals(vals_), vec_size(Kokkos::dimension_scalar(vals))
{
const size_type nnz = vals.dimension_0();
mean_vals = ViewType("mean-values", nnz, 1);
Kokkos::parallel_for( nnz, *this );
}
KOKKOS_INLINE_FUNCTION
void operator() (const size_type i) const
{
typename Scalar::value_type s = 0.0;
for (size_type j=0; j<vec_size; ++j)
s += vals(i).fastAccessCoeff(j);
mean_vals(i) = s;
}
MeanViewType getMeanValues() const { return mean_vals; }
private:
MeanViewType mean_vals;
ViewType vals;
const size_type vec_size;
};
template <typename Scalar, typename LO, typename GO, typename N>
Teuchos::RCP< Tpetra::CrsMatrix<Scalar,LO,GO,N> >
build_mean_matrix(const Tpetra::CrsMatrix<Scalar,LO,GO,N>& A)
{
using Teuchos::RCP;
using Teuchos::rcp;
typedef Tpetra::CrsMatrix<Scalar,LO,GO,N> MatrixType;
typedef Tpetra::Map<LO,GO,N> Map;
typedef typename MatrixType::local_matrix_type KokkosMatrixType;
typedef typename KokkosMatrixType::StaticCrsGraphType KokkosGraphType;
typedef typename KokkosMatrixType::values_type KokkosMatrixValuesType;
RCP< const Map > rmap = A.getRowMap();
RCP< const Map > cmap = A.getColMap();
KokkosMatrixType kokkos_matrix = A.getLocalMatrix();
KokkosGraphType kokkos_graph = kokkos_matrix.graph;
KokkosMatrixValuesType matrix_values = kokkos_matrix.values;
const size_t ncols = kokkos_matrix.numCols();
typedef GetMeanValsFunc <KokkosMatrixValuesType > MeanFunc;
typedef typename MeanFunc::MeanViewType KokkosMeanMatrixValuesType;
MeanFunc meanfunc(matrix_values);
KokkosMeanMatrixValuesType mean_matrix_values = meanfunc.getMeanValues();
// From here on we are assuming that
// KokkosMeanMatrixValuesType == KokkosMatrixValuestype
KokkosMatrixType mean_kokkos_matrix(
"mean-matrix", ncols, mean_matrix_values, kokkos_graph);
RCP < MatrixType > mean_matrix =
rcp( new MatrixType(rmap, cmap, mean_kokkos_matrix) );
return mean_matrix;
}
}
#endif // STOKHOS_TPETRA_UTILITIES_HPP
|