/usr/include/trilinos/Thyra_BelosLinearOpWithSolve_def.hpp is in libtrilinos-stratimikos-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 | /*
// @HEADER
// ***********************************************************************
//
// Stratimikos: Thyra-based strategies for linear solvers
// Copyright (2006) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
//
// ***********************************************************************
// @HEADER
*/
#ifndef THYRA_BELOS_LINEAR_OP_WITH_SOLVE_HPP
#define THYRA_BELOS_LINEAR_OP_WITH_SOLVE_HPP
#include "Thyra_BelosLinearOpWithSolve_decl.hpp"
#include "Thyra_GeneralSolveCriteriaBelosStatusTest.hpp"
#include "Thyra_LinearOpWithSolveHelpers.hpp"
#include "Teuchos_DebugDefaultAsserts.hpp"
#include "Teuchos_Assert.hpp"
#include "Teuchos_TimeMonitor.hpp"
#include "Teuchos_TypeTraits.hpp"
namespace {
// Set the Belos solver's parameter list to scale its residual norms
// in the specified way.
//
// We break this out in a separate function because the parameters
// to set depend on which parameters the Belos solver supports. Not
// all Belos solvers support both the "Implicit Residual Scaling"
// and "Explicit Residual Scaling" parameters, so we have to check
// the solver's list of valid parameters for the existence of these.
//
// Scaling options: Belos lets you decide whether the solver will
// scale residual norms by the (left-)preconditioned initial
// residual norms (residualScalingType = "Norm of Initial
// Residual"), or by the unpreconditioned initial residual norms
// (residualScalingType = "Norm of RHS"). Usually you want to scale
// by the unpreconditioned initial residual norms. This is because
// preconditioning is just an optimization, and you really want to
// make ||B - AX|| small, rather than ||M B - M (A X)||. If you're
// measuring ||B - AX|| and scaling by the initial residual, you
// should use the unpreconditioned initial residual to match it.
//
// Note, however, that the implicit residual test computes
// left-preconditioned residuals, if a left preconditioner was
// provided. That's OK because when Belos solvers (at least the
// GMRES variants) are given a left preconditioner, they first check
// the implicit residuals. If those converge, they then check the
// explicit residuals. The explicit residual test does _not_ apply
// the left preconditioner when computing the residual. The
// implicit residual test is just an optimization so that Belos
// doesn't have to compute explicit residuals B - A*X at every
// iteration. This is why we use the same scaling factor for both
// the implicit and explicit residuals.
//
// Arguments:
//
// solverParams [in/out] Parameters for the current solve.
//
// solverValidParams [in] Valid parameter list for the Belos solver.
// Result of calling the solver's getValidParameters() method.
//
// residualScalingType [in] String describing how the solver should
// scale residuals. Valid values include "Norm of RHS" and "Norm
// of Initial Residual" (these are the only two options this file
// currently uses, though Belos offers other options).
void
setResidualScalingType (const Teuchos::RCP<Teuchos::ParameterList>& solverParams,
const Teuchos::RCP<const Teuchos::ParameterList>& solverValidParams,
const std::string& residualScalingType)
{
// Many Belos solvers (especially the GMRES variants) define both
// "Implicit Residual Scaling" and "Explicit Residual Scaling"
// options.
//
// "Implicit" means "the left-preconditioned approximate
// a.k.a. 'recursive' residual as computed by the Krylov method."
//
// "Explicit" means ||B - A*X||, the unpreconditioned, "exact"
// residual.
//
// Belos' GMRES implementations chain these two tests in sequence.
// Implicit comes first, and explicit is not evaluated unless
// implicit passes. In some cases (e.g., no left preconditioner),
// GMRES _only_ uses the implicit tests. This means that only
// setting "Explicit Residual Scaling" won't change the solver's
// behavior. Stratimikos tends to prefer using a right
// preconditioner, in which case setting only the "Explicit
// Residual Scaling" argument has no effect. Furthermore, if
// "Explicit Residual Scaling" is set to something other than the
// default (initial residual norm), without "Implicit Residual
// Scaling" getting the same setting, then the implicit residual
// test will be using a radically different scaling factor than
// the user wanted.
//
// Not all Belos solvers support both options. We check the
// solver's valid parameter list first before attempting to set
// the option.
if (solverValidParams->isParameter ("Implicit Residual Scaling")) {
solverParams->set ("Implicit Residual Scaling", residualScalingType);
}
if (solverValidParams->isParameter ("Explicit Residual Scaling")) {
solverParams->set ("Explicit Residual Scaling", residualScalingType);
}
}
} // namespace (anonymous)
namespace Thyra {
// Constructors/initializers/accessors
template<class Scalar>
BelosLinearOpWithSolve<Scalar>::BelosLinearOpWithSolve()
:convergenceTestFrequency_(-1),
isExternalPrec_(false),
supportSolveUse_(SUPPORT_SOLVE_UNSPECIFIED),
defaultTol_ (-1.0)
{}
template<class Scalar>
void BelosLinearOpWithSolve<Scalar>::initialize(
const RCP<Belos::LinearProblem<Scalar,MV_t,LO_t> > &lp,
const RCP<Teuchos::ParameterList> &solverPL,
const RCP<Belos::SolverManager<Scalar,MV_t,LO_t> > &iterativeSolver,
const RCP<const LinearOpSourceBase<Scalar> > &fwdOpSrc,
const RCP<const PreconditionerBase<Scalar> > &prec,
const bool isExternalPrec_in,
const RCP<const LinearOpSourceBase<Scalar> > &approxFwdOpSrc,
const ESupportSolveUse &supportSolveUse_in,
const int convergenceTestFrequency
)
{
using Teuchos::as;
using Teuchos::TypeNameTraits;
using Teuchos::Exceptions::InvalidParameterType;
typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType magnitude_type;
this->setLinePrefix("BELOS/T");
// ToDo: Validate input
lp_ = lp;
solverPL_ = solverPL;
iterativeSolver_ = iterativeSolver;
fwdOpSrc_ = fwdOpSrc;
prec_ = prec;
isExternalPrec_ = isExternalPrec_in;
approxFwdOpSrc_ = approxFwdOpSrc;
supportSolveUse_ = supportSolveUse_in;
convergenceTestFrequency_ = convergenceTestFrequency;
// Check if "Convergence Tolerance" is in the solver parameter list. If
// not, use the default from the solver.
if ( !is_null(solverPL_) ) {
if (solverPL_->isParameter("Convergence Tolerance")) {
// Stratimikos prefers tolerances as double, no matter the
// Scalar type. However, we also want it to accept the
// tolerance as magnitude_type, for example float if the Scalar
// type is float or std::complex<float>.
if (solverPL_->isType<double> ("Convergence Tolerance")) {
defaultTol_ =
as<magnitude_type> (solverPL_->get<double> ("Convergence Tolerance"));
}
else if (Teuchos::TypeTraits::is_same<double, magnitude_type>::value) {
// magnitude_type == double in this case, and we've already
// checked double above.
TEUCHOS_TEST_FOR_EXCEPTION(
true, std::invalid_argument, "BelosLinearOpWithSolve::initialize: "
"The \"Convergence Tolerance\" parameter, which you provided, must "
"have type double (the type of the magnitude of Scalar = double).");
}
else if (solverPL_->isType<magnitude_type> ("Convergence Tolerance")) {
defaultTol_ = solverPL_->get<magnitude_type> ("Convergence Tolerance");
}
else {
// Throwing InvalidParameterType ensures that the exception's
// type is consistent both with what this method would have
// thrown before for an unrecognized type, and with what the
// user expects in general when the parameter doesn't have the
// right type.
TEUCHOS_TEST_FOR_EXCEPTION(
true, InvalidParameterType, "BelosLinearOpWithSolve::initialize: "
"The \"Convergence Tolerance\" parameter, which you provided, must "
"have type double (preferred) or the type of the magnitude of Scalar "
"= " << TypeNameTraits<Scalar>::name () << ", which is " <<
TypeNameTraits<magnitude_type>::name () << " in this case. You can "
"find that type using Teuchos::ScalarTraits<Scalar>::magnitudeType.");
}
}
}
else {
RCP<const Teuchos::ParameterList> defaultPL =
iterativeSolver->getValidParameters();
// Stratimikos prefers tolerances as double, no matter the
// Scalar type. However, we also want it to accept the
// tolerance as magnitude_type, for example float if the Scalar
// type is float or std::complex<float>.
if (defaultPL->isType<double> ("Convergence Tolerance")) {
defaultTol_ =
as<magnitude_type> (defaultPL->get<double> ("Convergence Tolerance"));
}
else if (Teuchos::TypeTraits::is_same<double, magnitude_type>::value) {
// magnitude_type == double in this case, and we've already
// checked double above.
TEUCHOS_TEST_FOR_EXCEPTION(
true, std::invalid_argument, "BelosLinearOpWithSolve::initialize: "
"The \"Convergence Tolerance\" parameter, which you provided, must "
"have type double (the type of the magnitude of Scalar = double).");
}
else if (defaultPL->isType<magnitude_type> ("Convergence Tolerance")) {
defaultTol_ = defaultPL->get<magnitude_type> ("Convergence Tolerance");
}
else {
// Throwing InvalidParameterType ensures that the exception's
// type is consistent both with what this method would have
// thrown before for an unrecognized type, and with what the
// user expects in general when the parameter doesn't have the
// right type.
TEUCHOS_TEST_FOR_EXCEPTION(
true, InvalidParameterType, "BelosLinearOpWithSolve::initialize: "
"The \"Convergence Tolerance\" parameter, which you provided, must "
"have type double (preferred) or the type of the magnitude of Scalar "
"= " << TypeNameTraits<Scalar>::name () << ", which is " <<
TypeNameTraits<magnitude_type>::name () << " in this case. You can "
"find that type using Teuchos::ScalarTraits<Scalar>::magnitudeType.");
}
}
}
template<class Scalar>
RCP<const LinearOpSourceBase<Scalar> >
BelosLinearOpWithSolve<Scalar>::extract_fwdOpSrc()
{
RCP<const LinearOpSourceBase<Scalar> >
_fwdOpSrc = fwdOpSrc_;
fwdOpSrc_ = Teuchos::null;
return _fwdOpSrc;
}
template<class Scalar>
RCP<const PreconditionerBase<Scalar> >
BelosLinearOpWithSolve<Scalar>::extract_prec()
{
RCP<const PreconditionerBase<Scalar> >
_prec = prec_;
prec_ = Teuchos::null;
return _prec;
}
template<class Scalar>
bool BelosLinearOpWithSolve<Scalar>::isExternalPrec() const
{
return isExternalPrec_;
}
template<class Scalar>
RCP<const LinearOpSourceBase<Scalar> >
BelosLinearOpWithSolve<Scalar>::extract_approxFwdOpSrc()
{
RCP<const LinearOpSourceBase<Scalar> >
_approxFwdOpSrc = approxFwdOpSrc_;
approxFwdOpSrc_ = Teuchos::null;
return _approxFwdOpSrc;
}
template<class Scalar>
ESupportSolveUse BelosLinearOpWithSolve<Scalar>::supportSolveUse() const
{
return supportSolveUse_;
}
template<class Scalar>
void BelosLinearOpWithSolve<Scalar>::uninitialize(
RCP<Belos::LinearProblem<Scalar,MV_t,LO_t> > *lp,
RCP<Teuchos::ParameterList> *solverPL,
RCP<Belos::SolverManager<Scalar,MV_t,LO_t> > *iterativeSolver,
RCP<const LinearOpSourceBase<Scalar> > *fwdOpSrc,
RCP<const PreconditionerBase<Scalar> > *prec,
bool *isExternalPrec_in,
RCP<const LinearOpSourceBase<Scalar> > *approxFwdOpSrc,
ESupportSolveUse *supportSolveUse_in
)
{
if (lp) *lp = lp_;
if (solverPL) *solverPL = solverPL_;
if (iterativeSolver) *iterativeSolver = iterativeSolver_;
if (fwdOpSrc) *fwdOpSrc = fwdOpSrc_;
if (prec) *prec = prec_;
if (isExternalPrec_in) *isExternalPrec_in = isExternalPrec_;
if (approxFwdOpSrc) *approxFwdOpSrc = approxFwdOpSrc_;
if (supportSolveUse_in) *supportSolveUse_in = supportSolveUse_;
lp_ = Teuchos::null;
solverPL_ = Teuchos::null;
iterativeSolver_ = Teuchos::null;
fwdOpSrc_ = Teuchos::null;
prec_ = Teuchos::null;
isExternalPrec_ = false;
approxFwdOpSrc_ = Teuchos::null;
supportSolveUse_ = SUPPORT_SOLVE_UNSPECIFIED;
}
// Overridden from LinearOpBase
template<class Scalar>
RCP< const VectorSpaceBase<Scalar> >
BelosLinearOpWithSolve<Scalar>::range() const
{
if (!is_null(lp_))
return lp_->getOperator()->range();
return Teuchos::null;
}
template<class Scalar>
RCP< const VectorSpaceBase<Scalar> >
BelosLinearOpWithSolve<Scalar>::domain() const
{
if (!is_null(lp_))
return lp_->getOperator()->domain();
return Teuchos::null;
}
template<class Scalar>
RCP<const LinearOpBase<Scalar> >
BelosLinearOpWithSolve<Scalar>::clone() const
{
return Teuchos::null; // Not supported yet but could be
}
// Overridden from Teuchos::Describable
template<class Scalar>
std::string BelosLinearOpWithSolve<Scalar>::description() const
{
std::ostringstream oss;
oss << Teuchos::Describable::description();
if ( !is_null(lp_) && !is_null(lp_->getOperator()) ) {
oss << "{";
oss << "iterativeSolver=\'"<<iterativeSolver_->description()<<"\'";
oss << ",fwdOp=\'"<<lp_->getOperator()->description()<<"\'";
if (lp_->getLeftPrec().get())
oss << ",leftPrecOp=\'"<<lp_->getLeftPrec()->description()<<"\'";
if (lp_->getRightPrec().get())
oss << ",rightPrecOp=\'"<<lp_->getRightPrec()->description()<<"\'";
oss << "}";
}
// ToDo: Make Belos::SolverManager derive from Teuchos::Describable so
// that we can get better information.
return oss.str();
}
template<class Scalar>
void BelosLinearOpWithSolve<Scalar>::describe(
Teuchos::FancyOStream &out_arg,
const Teuchos::EVerbosityLevel verbLevel
) const
{
using Teuchos::FancyOStream;
using Teuchos::OSTab;
using Teuchos::describe;
RCP<FancyOStream> out = rcp(&out_arg,false);
OSTab tab(out);
switch (verbLevel) {
case Teuchos::VERB_LOW:
break;
case Teuchos::VERB_DEFAULT:
case Teuchos::VERB_MEDIUM:
*out << this->description() << std::endl;
break;
case Teuchos::VERB_HIGH:
case Teuchos::VERB_EXTREME:
{
*out
<< Teuchos::Describable::description()<< "{"
<< "rangeDim=" << this->range()->dim()
<< ",domainDim=" << this->domain()->dim() << "}\n";
if (lp_->getOperator().get()) {
OSTab tab1(out);
*out
<< "iterativeSolver = "<<describe(*iterativeSolver_,verbLevel)
<< "fwdOp = " << describe(*lp_->getOperator(),verbLevel);
if (lp_->getLeftPrec().get())
*out << "leftPrecOp = "<<describe(*lp_->getLeftPrec(),verbLevel);
if (lp_->getRightPrec().get())
*out << "rightPrecOp = "<<describe(*lp_->getRightPrec(),verbLevel);
}
break;
}
default:
TEUCHOS_TEST_FOR_EXCEPT(true); // Should never get here!
}
}
// protected
// Overridden from LinearOpBase
template<class Scalar>
bool BelosLinearOpWithSolve<Scalar>::opSupportedImpl(EOpTransp M_trans) const
{
return ::Thyra::opSupported(*lp_->getOperator(),M_trans);
}
template<class Scalar>
void BelosLinearOpWithSolve<Scalar>::applyImpl(
const EOpTransp M_trans,
const MultiVectorBase<Scalar> &X,
const Ptr<MultiVectorBase<Scalar> > &Y,
const Scalar alpha,
const Scalar beta
) const
{
::Thyra::apply<Scalar>(*lp_->getOperator(), M_trans, X, Y, alpha, beta);
}
// Overridden from LinearOpWithSolveBase
template<class Scalar>
bool
BelosLinearOpWithSolve<Scalar>::solveSupportsImpl(EOpTransp M_trans) const
{
return solveSupportsNewImpl(M_trans, Teuchos::null);
}
template<class Scalar>
bool
BelosLinearOpWithSolve<Scalar>::solveSupportsNewImpl(EOpTransp transp,
const Ptr<const SolveCriteria<Scalar> > solveCriteria) const
{
// Only support forward solve right now!
if (real_trans(transp)==NOTRANS) return true;
return false; // ToDo: Support adjoint solves!
// Otherwise, Thyra/Belos now supports every solve criteria type that exists
// because of the class Thyra::GeneralSolveCriteriaBelosStatusTest!
/*
if (real_trans(M_trans)==NOTRANS) {
return (
solveMeasureType.useDefault()
||
solveMeasureType(SOLVE_MEASURE_NORM_RESIDUAL,SOLVE_MEASURE_NORM_RHS)
||
solveMeasureType(SOLVE_MEASURE_NORM_RESIDUAL,SOLVE_MEASURE_NORM_INIT_RESIDUAL)
);
}
*/
}
template<class Scalar>
bool
BelosLinearOpWithSolve<Scalar>::solveSupportsSolveMeasureTypeImpl(
EOpTransp M_trans, const SolveMeasureType& solveMeasureType) const
{
SolveCriteria<Scalar> solveCriteria(solveMeasureType, SolveCriteria<Scalar>::unspecifiedTolerance());
return solveSupportsNewImpl(M_trans, Teuchos::constOptInArg(solveCriteria));
}
template<class Scalar>
SolveStatus<Scalar>
BelosLinearOpWithSolve<Scalar>::solveImpl(
const EOpTransp M_trans,
const MultiVectorBase<Scalar> &B,
const Ptr<MultiVectorBase<Scalar> > &X,
const Ptr<const SolveCriteria<Scalar> > solveCriteria
) const
{
THYRA_FUNC_TIME_MONITOR("Stratimikos: BelosLOWS");
using Teuchos::rcp;
using Teuchos::rcpFromRef;
using Teuchos::rcpFromPtr;
using Teuchos::FancyOStream;
using Teuchos::OSTab;
using Teuchos::ParameterList;
using Teuchos::parameterList;
using Teuchos::describe;
typedef Teuchos::ScalarTraits<Scalar> ST;
typedef typename ST::magnitudeType ScalarMag;
Teuchos::Time totalTimer(""), timer("");
totalTimer.start(true);
assertSolveSupports(*this, M_trans, solveCriteria);
// 2010/08/22: rabartl: Bug 4915 ToDo: Move the above into the NIV function
// solve(...).
const RCP<FancyOStream> out = this->getOStream();
const Teuchos::EVerbosityLevel verbLevel = this->getVerbLevel();
OSTab tab = this->getOSTab();
if (out.get() && static_cast<int>(verbLevel) > static_cast<int>(Teuchos::VERB_LOW)) {
*out << "\nStarting iterations with Belos:\n";
OSTab tab2(out);
*out << "Using forward operator = " << describe(*fwdOpSrc_->getOp(),verbLevel);
*out << "Using iterative solver = " << describe(*iterativeSolver_,verbLevel);
*out << "With #Eqns="<<B.range()->dim()<<", #RHSs="<<B.domain()->dim()<<" ...\n";
}
//
// Set RHS and LHS
//
bool ret = lp_->setProblem( rcpFromPtr(X), rcpFromRef(B) );
TEUCHOS_TEST_FOR_EXCEPTION(
ret == false, CatastrophicSolveFailure
,"Error, the Belos::LinearProblem could not be set for the current solve!"
);
//
// Set the solution criteria
//
// Parameter list for the current solve.
const RCP<ParameterList> tmpPL = Teuchos::parameterList();
// The solver's valid parameter list.
RCP<const ParameterList> validPL = iterativeSolver_->getValidParameters();
SolveMeasureType solveMeasureType;
RCP<GeneralSolveCriteriaBelosStatusTest<Scalar> > generalSolveCriteriaBelosStatusTest;
if (nonnull(solveCriteria)) {
solveMeasureType = solveCriteria->solveMeasureType;
const ScalarMag requestedTol = solveCriteria->requestedTol;
if (solveMeasureType.useDefault()) {
tmpPL->set("Convergence Tolerance", defaultTol_);
}
else if (solveMeasureType(SOLVE_MEASURE_NORM_RESIDUAL, SOLVE_MEASURE_NORM_RHS)) {
if (requestedTol != SolveCriteria<Scalar>::unspecifiedTolerance()) {
tmpPL->set("Convergence Tolerance", requestedTol);
}
else {
tmpPL->set("Convergence Tolerance", defaultTol_);
}
setResidualScalingType (tmpPL, validPL, "Norm of RHS");
}
else if (solveMeasureType(SOLVE_MEASURE_NORM_RESIDUAL, SOLVE_MEASURE_NORM_INIT_RESIDUAL)) {
if (requestedTol != SolveCriteria<Scalar>::unspecifiedTolerance()) {
tmpPL->set("Convergence Tolerance", requestedTol);
}
else {
tmpPL->set("Convergence Tolerance", defaultTol_);
}
setResidualScalingType (tmpPL, validPL, "Norm of Initial Residual");
}
else {
// Set the most generic (and inefficient) solve criteria
generalSolveCriteriaBelosStatusTest = createGeneralSolveCriteriaBelosStatusTest(
*solveCriteria, convergenceTestFrequency_);
// Set the verbosity level (one level down)
generalSolveCriteriaBelosStatusTest->setOStream(out);
generalSolveCriteriaBelosStatusTest->setVerbLevel(incrVerbLevel(verbLevel, -1));
// Set the default convergence tolerance to always converged to allow
// the above status test to control things.
tmpPL->set("Convergence Tolerance", 1.0);
}
// maximum iterations
if (nonnull(solveCriteria->extraParameters)) {
if (Teuchos::isParameterType<int>(*solveCriteria->extraParameters,"Maximum Iterations")) {
tmpPL->set("Maximum Iterations", Teuchos::get<int>(*solveCriteria->extraParameters,"Maximum Iterations"));
}
}
// If a preconditioner is on the left, then the implicit residual test
// scaling should be the preconditioned initial residual.
if (Teuchos::nonnull(lp_->getLeftPrec()) &&
validPL->isParameter ("Implicit Residual Scaling"))
tmpPL->set("Implicit Residual Scaling",
"Norm of Preconditioned Initial Residual");
}
else {
// No solveCriteria was even passed in!
tmpPL->set("Convergence Tolerance", defaultTol_);
}
//
// Solve the linear system
//
Belos::ReturnType belosSolveStatus;
{
// Write detailed convergence information if requested for levels >= VERB_LOW
RCP<std::ostream>
outUsed =
( static_cast<int>(verbLevel) >= static_cast<int>(Teuchos::VERB_LOW)
? out
: rcp(new FancyOStream(rcp(new Teuchos::oblackholestream())))
);
Teuchos::OSTab tab1(outUsed,1,"BELOS");
tmpPL->set("Output Stream", outUsed);
iterativeSolver_->setParameters(tmpPL);
if (nonnull(generalSolveCriteriaBelosStatusTest)) {
iterativeSolver_->setUserConvStatusTest(generalSolveCriteriaBelosStatusTest);
}
try {
belosSolveStatus = iterativeSolver_->solve();
}
catch (Belos::BelosError&) {
belosSolveStatus = Belos::Unconverged;
}
}
//
// Report the solve status
//
totalTimer.stop();
SolveStatus<Scalar> solveStatus;
switch (belosSolveStatus) {
case Belos::Unconverged: {
solveStatus.solveStatus = SOLVE_STATUS_UNCONVERGED;
// Set achievedTol even if the solver did not converge. This is
// helpful for things like nonlinear solvers, which might be
// able to use a partially converged result, and which would
// like to know the achieved convergence tolerance for use in
// computing bounds. It's also helpful for estimating whether a
// small increase in the maximum iteration count might be
// helpful next time.
try {
// Some solvers might not have implemented achievedTol().
// The default implementation throws std::runtime_error.
solveStatus.achievedTol = iterativeSolver_->achievedTol();
} catch (std::runtime_error&) {
// Do nothing; use the default value of achievedTol.
}
break;
}
case Belos::Converged: {
solveStatus.solveStatus = SOLVE_STATUS_CONVERGED;
if (nonnull(generalSolveCriteriaBelosStatusTest)) {
// The user set a custom status test. This means that we
// should ask the custom status test itself, rather than the
// Belos solver, what the final achieved convergence tolerance
// was.
const ArrayView<const ScalarMag> achievedTol =
generalSolveCriteriaBelosStatusTest->achievedTol();
solveStatus.achievedTol = ST::zero();
for (Ordinal i = 0; i < achievedTol.size(); ++i) {
solveStatus.achievedTol = std::max(solveStatus.achievedTol, achievedTol[i]);
}
}
else {
try {
// Some solvers might not have implemented achievedTol().
// The default implementation throws std::runtime_error.
solveStatus.achievedTol = iterativeSolver_->achievedTol();
} catch (std::runtime_error&) {
// Use the default convergence tolerance. This is a correct
// upper bound, since we did actually converge.
solveStatus.achievedTol = tmpPL->get("Convergence Tolerance", defaultTol_);
}
}
break;
}
TEUCHOS_SWITCH_DEFAULT_DEBUG_ASSERT();
}
std::ostringstream ossmessage;
ossmessage
<< "The Belos solver of type \""<<iterativeSolver_->description()
<<"\" returned a solve status of \""<< toString(solveStatus.solveStatus) << "\""
<< " in " << iterativeSolver_->getNumIters() << " iterations"
<< " with total CPU time of " << totalTimer.totalElapsedTime() << " sec" ;
if (out.get() && static_cast<int>(verbLevel) > static_cast<int>(Teuchos::VERB_LOW))
*out << "\n" << ossmessage.str() << "\n";
solveStatus.message = ossmessage.str();
// Dump the getNumIters() and the achieved convergence tolerance
// into solveStatus.extraParameters, as the "Belos/Iteration Count"
// resp. "Belos/Achieved Tolerance" parameters.
if (solveStatus.extraParameters.is_null()) {
solveStatus.extraParameters = parameterList ();
}
solveStatus.extraParameters->set ("Belos/Iteration Count",
iterativeSolver_->getNumIters());\
// package independent version of the same
solveStatus.extraParameters->set ("Iteration Count",
iterativeSolver_->getNumIters());\
// NOTE (mfh 13 Dec 2011) Though the most commonly used Belos
// solvers do implement achievedTol(), some Belos solvers currently
// do not. In the latter case, if the solver did not converge, the
// reported achievedTol() value may just be the default "invalid"
// value -1, and if the solver did converge, the reported value will
// just be the convergence tolerance (a correct upper bound).
solveStatus.extraParameters->set ("Belos/Achieved Tolerance",
solveStatus.achievedTol);
// This information is in the previous line, which is printed anytime the verbosity
// is not set to Teuchos::VERB_NONE, so I'm commenting this out for now.
// if (out.get() && static_cast<int>(verbLevel) > static_cast<int>(Teuchos::VERB_NONE))
// *out << "\nTotal solve time in Belos = "<<totalTimer.totalElapsedTime()<<" sec\n";
return solveStatus;
}
} // end namespace Thyra
#endif // THYRA_BELOS_LINEAR_OP_WITH_SOLVE_HPP
|