/usr/include/trilinos/Teko_Utilities.hpp is in libtrilinos-teko-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 | /*
// @HEADER
//
// ***********************************************************************
//
// Teko: A package for block and physics based preconditioning
// Copyright 2010 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric C. Cyr (eccyr@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
*/
/** \file Teko_Utilities.hpp
*
* This file contains a number of useful functions and classes
* used in Teko. They are distinct from the core functionality of
* the preconditioner factory, however, the functions are critical
* to construction of the preconditioners themselves.
*/
#ifndef __Teko_Utilities_hpp__
#define __Teko_Utilities_hpp__
#include "Epetra_CrsMatrix.h"
#include "Tpetra_CrsMatrix.hpp"
// Teuchos includes
#include "Teuchos_VerboseObject.hpp"
// Thyra includes
#include "Thyra_LinearOpBase.hpp"
#include "Thyra_PhysicallyBlockedLinearOpBase.hpp"
#include "Thyra_ProductVectorSpaceBase.hpp"
#include "Thyra_VectorSpaceBase.hpp"
#include "Thyra_ProductMultiVectorBase.hpp"
#include "Thyra_MultiVectorStdOps.hpp"
#include "Thyra_MultiVectorBase.hpp"
#include "Thyra_VectorBase.hpp"
#include "Thyra_VectorStdOps.hpp"
#include "Thyra_DefaultBlockedLinearOp.hpp"
#include "Thyra_DefaultMultipliedLinearOp.hpp"
#include "Thyra_DefaultScaledAdjointLinearOp.hpp"
#include "Thyra_DefaultAddedLinearOp.hpp"
#include "Thyra_DefaultIdentityLinearOp.hpp"
#include "Thyra_DefaultZeroLinearOp.hpp"
#include "Teko_ConfigDefs.hpp"
#ifdef _MSC_VER
#ifndef _MSC_EXTENSIONS
#define _MSC_EXTENSIONS
#define TEKO_DEFINED_MSC_EXTENSIONS
#endif
#include <iso646.h> // For C alternative tokens
#endif
// #define Teko_DEBUG_OFF
#define Teko_DEBUG_INT 5
namespace Teko {
using Thyra::multiply;
using Thyra::scale;
using Thyra::add;
using Thyra::identity;
using Thyra::zero; // make it to take one argument (square matrix)
using Thyra::block2x2;
using Thyra::block2x1;
using Thyra::block1x2;
/** \brief Build a graph Laplacian stenciled on a Epetra_CrsMatrix.
*
* This function builds a graph Laplacian given a (locally complete)
* vector of coordinates and a stencil Epetra_CrsMatrix (could this be
* a graph of Epetra_RowMatrix instead?). The resulting matrix will have
* the negative of the inverse distance on off diagonals. And the sum
* of the positive inverse distance of the off diagonals on the diagonal.
* If there are no off diagonal entries in the stencil, the diagonal is
* set to 0.
*
* \param[in] dim Number of physical dimensions (2D or 3D?).
* \param[in] coords A vector containing the coordinates, with the <code>i</code>-th
* coordinate beginning at <code>coords[i*dim]</code>.
* \param[in] stencil The stencil matrix used to describe the connectivity
* of the graph Laplacian matrix.
*
* \returns The graph Laplacian matrix to be filled according to the <code>stencil</code> matrix.
*/
Teuchos::RCP<Epetra_CrsMatrix> buildGraphLaplacian(int dim,double * coords,const Epetra_CrsMatrix & stencil);
Teuchos::RCP<Tpetra::CrsMatrix<ST,LO,GO,NT> > buildGraphLaplacian(int dim,ST * coords,const Tpetra::CrsMatrix<ST,LO,GO,NT> & stencil);
/** \brief Build a graph Laplacian stenciled on a Epetra_CrsMatrix.
*
* This function builds a graph Laplacian given a (locally complete)
* vector of coordinates and a stencil Epetra_CrsMatrix (could this be
* a graph of Epetra_RowMatrix instead?). The resulting matrix will have
* the negative of the inverse distance on off diagonals. And the sum
* of the positive inverse distance of the off diagonals on the diagonal.
* If there are no off diagonal entries in the stencil, the diagonal is
* set to 0.
*
* \param[in] x A vector containing the x-coordinates, with the <code>i</code>-th
* coordinate beginning at <code>coords[i*stride]</code>.
* \param[in] y A vector containing the y-coordinates, with the <code>i</code>-th
* coordinate beginning at <code>coords[i*stride]</code>.
* \param[in] z A vector containing the z-coordinates, with the <code>i</code>-th
* coordinate beginning at <code>coords[i*stride]</code>.
* \param[in] stride Stride between entries in the (x,y,z) coordinate array
* \param[in] stencil The stencil matrix used to describe the connectivity
* of the graph Laplacian matrix.
*
* \returns The graph Laplacian matrix to be filled according to the <code>stencil</code> matrix.
*/
Teuchos::RCP<Epetra_CrsMatrix> buildGraphLaplacian(double * x,double * y,double * z,int stride,const Epetra_CrsMatrix & stencil);
Teuchos::RCP<Tpetra::CrsMatrix<ST,LO,GO,NT> > buildGraphLaplacian(ST * x,ST * y,ST * z,GO stride,const Tpetra::CrsMatrix<ST,LO,GO,NT> & stencil);
/** \brief Function used internally by Teko to find the output stream.
*
* Function used internally by Teko to find the output stream.
*
* \returns An output stream to use for printing
*/
const Teuchos::RCP<Teuchos::FancyOStream> getOutputStream();
// inline const Teuchos::RCP<Teuchos::FancyOStream> getOutputStream();
// { return Teuchos::VerboseObjectBase::getDefaultOStream(); }
#ifndef Teko_DEBUG_OFF
//#if 0
#define Teko_DEBUG_EXPR(str) str
#define Teko_DEBUG_MSG(str,level) if(level<=Teko_DEBUG_INT) { \
Teuchos::RCP<Teuchos::FancyOStream> out = Teko::getOutputStream(); \
*out << "Teko: " << str << std::endl; }
#define Teko_DEBUG_MSG_BEGIN(level) if(level<=Teko_DEBUG_INT) { \
Teko::getOutputStream()->pushTab(3); \
*Teko::getOutputStream() << "Teko: Begin debug MSG\n"; \
std::ostream & DEBUG_STREAM = *Teko::getOutputStream(); \
Teko::getOutputStream()->pushTab(3);
#define Teko_DEBUG_MSG_END() Teko::getOutputStream()->popTab(); \
*Teko::getOutputStream() << "Teko: End debug MSG\n"; \
Teko::getOutputStream()->popTab(); }
#define Teko_DEBUG_PUSHTAB() Teko::getOutputStream()->pushTab(3)
#define Teko_DEBUG_POPTAB() Teko::getOutputStream()->popTab()
#define Teko_DEBUG_SCOPE(str,level)
// struct __DebugScope__ {
// __DebugScope__(const std::string & str,int level)
// : str_(str), level_(level)
// { Teko_DEBUG_MSG("BEGIN "+str_,level_); Teko_DEBUG_PUSHTAB(); }
// ~__DebugScope__()
// { Teko_DEBUG_POPTAB(); Teko_DEBUG_MSG("END "+str_,level_); }
// std::string str_; int level_; };
// #define Teko_DEBUG_SCOPE(str,level) __DebugScope__ __dbgScope__(str,level);
#else
#define Teko_DEBUG_EXPR(str)
#define Teko_DEBUG_MSG(str,level)
#define Teko_DEBUG_MSG_BEGIN(level) if(false) { \
std::ostream & DEBUG_STREAM = *Teko::getOutputStream();
#define Teko_DEBUG_MSG_END() }
#define Teko_DEBUG_PUSHTAB()
#define Teko_DEBUG_POPTAB()
#define Teko_DEBUG_SCOPE(str,level)
#endif
// typedefs for increased simplicity
typedef Teuchos::RCP<const Thyra::VectorSpaceBase<double> > VectorSpace;
// ----------------------------------------------------------------------------
//! @name MultiVector utilities
//@{
typedef Teuchos::RCP<Thyra::ProductMultiVectorBase<double> > BlockedMultiVector;
typedef Teuchos::RCP<Thyra::MultiVectorBase<double> > MultiVector;
//! Convert to a MultiVector from a BlockedMultiVector
inline MultiVector toMultiVector(BlockedMultiVector & bmv) { return bmv; }
//! Convert to a MultiVector from a BlockedMultiVector
inline const MultiVector toMultiVector(const BlockedMultiVector & bmv) { return bmv; }
//! Convert to a BlockedMultiVector from a MultiVector
inline const BlockedMultiVector toBlockedMultiVector(const MultiVector & bmv)
{ return Teuchos::rcp_dynamic_cast<Thyra::ProductMultiVectorBase<double> >(bmv); }
//! Get the column count in a block linear operator
inline int blockCount(const BlockedMultiVector & bmv)
{ return bmv->productSpace()->numBlocks(); }
//! Get the <code>i</code>th block from a BlockedMultiVector object
inline MultiVector getBlock(int i,const BlockedMultiVector & bmv)
{ return Teuchos::rcp_const_cast<Thyra::MultiVectorBase<double> >(bmv->getMultiVectorBlock(i)); }
//! Perform a deep copy of the vector
inline MultiVector deepcopy(const MultiVector & v)
{ return v->clone_mv(); }
//! Perform a deep copy of the vector
inline MultiVector copyAndInit(const MultiVector & v,double scalar)
{ MultiVector mv = v->clone_mv(); Thyra::assign(mv.ptr(),scalar); return mv; }
//! Perform a deep copy of the blocked vector
inline BlockedMultiVector deepcopy(const BlockedMultiVector & v)
{ return toBlockedMultiVector(v->clone_mv()); }
/** \brief Copy the contents of a multivector to a destination vector.
*
* Copy the contents of a multivector to a new vector. If the destination
* vector is null, a deep copy of the source multivector is made to a newly allocated
* vector. Also, if the destination and the source do not match, a new destination
* object is allocated and returned to the user.
*
* \param[in] src Source multivector to be copied.
* \param[in] dst Destination multivector. If null a new multivector will be allocated.
*
* \returns A copy of the source multivector. If dst is not null a pointer to this object
* is returned. Otherwise a new multivector is returned.
*/
inline MultiVector datacopy(const MultiVector & src,MultiVector & dst)
{
if(dst==Teuchos::null)
return deepcopy(src);
bool rangeCompat = src->range()->isCompatible(*dst->range());
bool domainCompat = src->domain()->isCompatible(*dst->domain());
if(not (rangeCompat && domainCompat))
return deepcopy(src);
// perform data copy
Thyra::assign<double>(dst.ptr(),*src);
return dst;
}
/** \brief Copy the contents of a blocked multivector to a destination vector.
*
* Copy the contents of a blocked multivector to a new vector. If the destination
* vector is null, a deep copy of the source multivector is made to a newly allocated
* vector. Also, if the destination and the source do not match, a new destination
* object is allocated and returned to the user.
*
* \param[in] src Source multivector to be copied.
* \param[in] dst Destination multivector. If null a new multivector will be allocated.
*
* \returns A copy of the source multivector. If dst is not null a pointer to this object
* is returned. Otherwise a new multivector is returned.
*/
inline BlockedMultiVector datacopy(const BlockedMultiVector & src,BlockedMultiVector & dst)
{
if(dst==Teuchos::null)
return deepcopy(src);
bool rangeCompat = src->range()->isCompatible(*dst->range());
bool domainCompat = src->domain()->isCompatible(*dst->domain());
if(not (rangeCompat && domainCompat))
return deepcopy(src);
// perform data copy
Thyra::assign<double>(dst.ptr(),*src);
return dst;
}
//! build a BlockedMultiVector from a vector of MultiVectors
BlockedMultiVector buildBlockedMultiVector(const std::vector<MultiVector> & mvs);
/** Construct an indicator vector specified by a vector of indices to
* be set to ``on''.
*
* \param[in] indices Vector of indicies to turn on
* \param[in] vs Vector space to construct the vector from
* \param[in] onValue Value to set in the vector to on
* \param[in] offValue Value to set in the vector to off
*
* \return Vector of on and off values.
*/
Teuchos::RCP<Thyra::VectorBase<double> > indicatorVector(
const std::vector<int> & indices,
const VectorSpace & vs,
double onValue=1.0, double offValue=0.0);
//@}
// ----------------------------------------------------------------------------
//! @name LinearOp utilities
//@{
typedef Teuchos::RCP<Thyra::PhysicallyBlockedLinearOpBase<ST> > BlockedLinearOp;
typedef Teuchos::RCP<const Thyra::LinearOpBase<ST> > LinearOp;
typedef Teuchos::RCP<Thyra::LinearOpBase<ST> > InverseLinearOp;
typedef Teuchos::RCP<Thyra::LinearOpBase<ST> > ModifiableLinearOp;
//! Build a square zero operator from a single vector space
inline LinearOp zero(const VectorSpace & vs)
{ return Thyra::zero<ST>(vs,vs); }
//! Replace nonzeros with a scalar value, used to zero out an operator
void putScalar(const ModifiableLinearOp & op,double scalar);
//! Get the range space of a linear operator
inline VectorSpace rangeSpace(const LinearOp & lo)
{ return lo->range(); }
//! Get the domain space of a linear operator
inline VectorSpace domainSpace(const LinearOp & lo)
{ return lo->domain(); }
//! Converts a LinearOp to a BlockedLinearOp
inline BlockedLinearOp toBlockedLinearOp(LinearOp & clo)
{
Teuchos::RCP<Thyra::LinearOpBase<double> > lo = Teuchos::rcp_const_cast<Thyra::LinearOpBase<double> >(clo);
return Teuchos::rcp_dynamic_cast<Thyra::PhysicallyBlockedLinearOpBase<double> > (lo);
}
//! Converts a LinearOp to a BlockedLinearOp
inline const BlockedLinearOp toBlockedLinearOp(const LinearOp & clo)
{
Teuchos::RCP<Thyra::LinearOpBase<double> > lo = Teuchos::rcp_const_cast<Thyra::LinearOpBase<double> >(clo);
return Teuchos::rcp_dynamic_cast<Thyra::PhysicallyBlockedLinearOpBase<double> > (lo);
}
//! Convert to a LinearOp from a BlockedLinearOp
inline LinearOp toLinearOp(BlockedLinearOp & blo) { return blo; }
//! Convert to a LinearOp from a BlockedLinearOp
inline const LinearOp toLinearOp(const BlockedLinearOp & blo) { return blo; }
//! Convert to a LinearOp from a BlockedLinearOp
inline LinearOp toLinearOp(ModifiableLinearOp & blo) { return blo; }
//! Convert to a LinearOp from a BlockedLinearOp
inline const LinearOp toLinearOp(const ModifiableLinearOp & blo) { return blo; }
//! Get the row count in a block linear operator
inline int blockRowCount(const BlockedLinearOp & blo)
{ return blo->productRange()->numBlocks(); }
//! Get the column count in a block linear operator
inline int blockColCount(const BlockedLinearOp & blo)
{ return blo->productDomain()->numBlocks(); }
//! Get the <code>i,j</code> block in a BlockedLinearOp object
inline LinearOp getBlock(int i,int j,const BlockedLinearOp & blo)
{ return blo->getBlock(i,j); }
//! Set the <code>i,j</code> block in a BlockedLinearOp object
inline void setBlock(int i,int j,BlockedLinearOp & blo, const LinearOp & lo)
{ return blo->setBlock(i,j,lo); }
//! Build a new blocked linear operator
inline BlockedLinearOp createBlockedOp()
{ return rcp(new Thyra::DefaultBlockedLinearOp<double>()); }
/** \brief Let the blocked operator know that you are going to
* set the sub blocks.
*
* Let the blocked operator know that you are going to
* set the sub blocks. This is a simple wrapper around the
* member function of the same name in Thyra.
*
* \param[in,out] blo Blocked operator to have its fill stage activated
* \param[in] rowCnt Number of block rows in this operator
* \param[in] colCnt Number of block columns in this operator
*/
inline void beginBlockFill(BlockedLinearOp & blo,int rowCnt,int colCnt)
{ blo->beginBlockFill(rowCnt,colCnt); }
/** \brief Let the blocked operator know that you are going to
* set the sub blocks.
*
* Let the blocked operator know that you are going to
* set the sub blocks. This is a simple wrapper around the
* member function of the same name in Thyra.
*
* \param[in,out] blo Blocked operator to have its fill stage activated
*/
inline void beginBlockFill(BlockedLinearOp & blo)
{ blo->beginBlockFill(); }
//! Notify the blocked operator that the fill stage is completed.
inline void endBlockFill(BlockedLinearOp & blo)
{ blo->endBlockFill(); }
//! Get the strictly upper triangular portion of the matrix
BlockedLinearOp getUpperTriBlocks(const BlockedLinearOp & blo,bool callEndBlockFill=true);
//! Get the strictly lower triangular portion of the matrix
BlockedLinearOp getLowerTriBlocks(const BlockedLinearOp & blo,bool callEndBlockFill=true);
/** \brief Build a zero operator mimicing the block structure
* of the passed in matrix.
*
* Build a zero operator mimicing the block structure
* of the passed in matrix. Currently this function assumes
* that the operator is "block" square. Also, this function
* calls <code>beginBlockFill</code> but does not call
* <code>endBlockFill</code>. This is so that the user
* can fill the matrix as they wish once created.
*
* \param[in] blo Blocked operator with desired structure.
*
* \returns A zero operator with the same block structure as
* the argument <code>blo</code>.
*
* \note The caller is responsible for calling
* <code>endBlockFill</code> on the returned blocked
* operator.
*/
BlockedLinearOp zeroBlockedOp(const BlockedLinearOp & blo);
//! Figure out if this operator is the zero operator (or null!)
bool isZeroOp(const LinearOp op);
/** \brief Compute absolute row sum matrix.
*
* Compute the absolute row sum matrix. That is
* a diagonal operator composed of the absolute value of the
* row sum.
*
* \returns A diagonal operator.
*/
ModifiableLinearOp getAbsRowSumMatrix(const LinearOp & op);
/** \brief Compute inverse of the absolute row sum matrix.
*
* Compute the inverse of the absolute row sum matrix. That is
* a diagonal operator composed of the inverse of the absolute value
* of the row sum.
*
* \returns A diagonal operator.
*/
ModifiableLinearOp getAbsRowSumInvMatrix(const LinearOp & op);
/** \brief Compute the lumped version of this matrix.
*
* Compute the lumped version of this matrix. That is
* a diagonal operator composed of the row sum.
*
* \returns A diagonal operator.
*/
ModifiableLinearOp getLumpedMatrix(const LinearOp & op);
/** \brief Compute the inverse of the lumped version of
* this matrix.
*
* Compute the inverse of the lumped version of this matrix.
* That is a diagonal operator composed of the row sum.
*
* \returns A diagonal operator.
*/
ModifiableLinearOp getInvLumpedMatrix(const LinearOp & op);
//@}
//! @name Mathematical functions
//@{
/** \brief Apply a linear operator to a multivector (think of this as a matrix
* vector multiply).
*
* Apply a linear operator to a multivector. This also permits arbitrary scaling
* and addition of the result. This function gives
*
* \f$ y = \alpha A x + \beta y \f$
*
* It is required that the range space of <code>A</code> is compatible with <code>y</code> and the domain space
* of <code>A</code> is compatible with <code>x</code>.
*
* \param[in] A
* \param[in] x
* \param[in,out] y
* \param[in] alpha
* \param[in] beta
*
*/
void applyOp(const LinearOp & A,const MultiVector & x,MultiVector & y,double alpha=1.0,double beta=0.0);
/** \brief Apply a transposed linear operator to a multivector (think of this as a matrix
* vector multiply).
*
* Apply a transposed linear operator to a multivector. This also permits arbitrary scaling
* and addition of the result. This function gives
*
* \f$ y = \alpha A^T x + \beta y \f$
*
* It is required that the domain space of <code>A</code> is compatible with <code>y</code> and the range space
* of <code>A</code> is compatible with <code>x</code>.
*
* \param[in] A
* \param[in] x
* \param[in,out] y
* \param[in] alpha
* \param[in] beta
*
*/
void applyTransposeOp(const LinearOp & A,const MultiVector & x,MultiVector & y,double alpha=1.0,double beta=0.0);
/** \brief Apply a linear operator to a blocked multivector (think of this as a matrix
* vector multiply).
*
* Apply a linear operator to a blocked multivector. This also permits arbitrary scaling
* and addition of the result. This function gives
*
* \f$ y = \alpha A x + \beta y \f$
*
* It is required that the range space of <code>A</code> is compatible with <code>y</code> and the domain space
* of <code>A</code> is compatible with <code>x</code>.
*
* \param[in] A
* \param[in] x
* \param[in,out] y
* \param[in] alpha
* \param[in] beta
*
*/
inline void applyOp(const LinearOp & A,const BlockedMultiVector & x,BlockedMultiVector & y,double alpha=1.0,double beta=0.0)
{ const MultiVector x_mv = toMultiVector(x); MultiVector y_mv = toMultiVector(y);
applyOp(A,x_mv,y_mv,alpha,beta); }
/** \brief Apply a transposed linear operator to a blocked multivector (think of this as a matrix
* vector multiply).
*
* Apply a transposed linear operator to a blocked multivector. This also permits arbitrary scaling
* and addition of the result. This function gives
*
* \f$ y = \alpha A^T x + \beta y \f$
*
* It is required that the domain space of <code>A</code> is compatible with <code>y</code> and the range space
* of <code>A</code> is compatible with <code>x</code>.
*
* \param[in] A
* \param[in] x
* \param[in,out] y
* \param[in] alpha
* \param[in] beta
*
*/
inline void applyTransposeOp(const LinearOp & A,const BlockedMultiVector & x,BlockedMultiVector & y,double alpha=1.0,double beta=0.0)
{ const MultiVector x_mv = toMultiVector(x); MultiVector y_mv = toMultiVector(y);
applyTransposeOp(A,x_mv,y_mv,alpha,beta); }
/** \brief Update the <code>y</code> vector so that \f$y = \alpha x+\beta y\f$
*
* Compute the linear combination \f$y=\alpha x + \beta y\f$.
*
* \param[in] alpha
* \param[in] x
* \param[in] beta
* \param[in,out] y
*/
void update(double alpha,const MultiVector & x,double beta,MultiVector & y);
//! \brief Update for a BlockedMultiVector
inline void update(double alpha,const BlockedMultiVector & x,double beta,BlockedMultiVector & y)
{ MultiVector x_mv = toMultiVector(x); MultiVector y_mv = toMultiVector(y);
update(alpha,x_mv,beta,y_mv); }
//! Scale a multivector by a constant
inline void scale(const double alpha,MultiVector & x) { Thyra::scale<double>(alpha,x.ptr()); }
//! Scale a multivector by a constant
inline void scale(const double alpha,BlockedMultiVector & x)
{ MultiVector x_mv = toMultiVector(x); scale(alpha,x_mv); }
//! Scale a modifiable linear op by a constant
inline LinearOp scale(const double alpha,ModifiableLinearOp & a)
{ return Thyra::nonconstScale(alpha,a); }
//! Construct an implicit adjoint of the linear operators
inline LinearOp adjoint(ModifiableLinearOp & a)
{ return Thyra::nonconstAdjoint(a); }
//@}
//! \name Epetra_Operator specific functions
//@{
/** \brief Get the diaonal of a linear operator
*
* Get the diagonal of a linear operator. Currently
* it is assumed that the underlying operator is
* an Epetra_RowMatrix.
*
* \param[in] op The operator whose diagonal is to be
* extracted.
*
* \returns An diagonal operator.
*/
const ModifiableLinearOp getDiagonalOp(const LinearOp & op);
/** \brief Get the diagonal of a linear operator
*
* Get the diagonal of a linear operator, putting it
* in the first column of a multivector.
*/
const MultiVector getDiagonal(const LinearOp & op);
/** \brief Get the diaonal of a linear operator
*
* Get the inverse of the diagonal of a linear operator.
* Currently it is assumed that the underlying operator is
* an Epetra_RowMatrix.
*
* \param[in] op The operator whose diagonal is to be
* extracted and inverted
*
* \returns An diagonal operator.
*/
const ModifiableLinearOp getInvDiagonalOp(const LinearOp & op);
/** \brief Multiply three linear operators.
*
* Multiply three linear operators. This currently assumes
* that the underlying implementation uses Epetra_CrsMatrix.
* The exception is that opm is allowed to be an diagonal matrix.
*
* \param[in] opl Left operator (assumed to be a Epetra_CrsMatrix)
* \param[in] opm Middle operator (assumed to be a Epetra_CrsMatrix or a diagonal matrix)
* \param[in] opr Right operator (assumed to be a Epetra_CrsMatrix)
*
* \returns Matrix product with a Epetra_CrsMatrix implementation
*/
const LinearOp explicitMultiply(const LinearOp & opl,const LinearOp & opm,const LinearOp & opr);
/** \brief Multiply three linear operators.
*
* Multiply three linear operators. This currently assumes
* that the underlying implementation uses Epetra_CrsMatrix.
* The exception is that opm is allowed to be an diagonal matrix.
*
* \param[in] opl Left operator (assumed to be a Epetra_CrsMatrix)
* \param[in] opm Middle operator (assumed to be a Epetra_CrsMatrix or a diagonal matrix)
* \param[in] opr Right operator (assumed to be a Epetra_CrsMatrix)
* \param[in,out] destOp The operator to be used as the destination operator,
* if this is null this function creates a new operator
*
* \returns Matrix product with a Epetra_CrsMatrix implementation
*/
const ModifiableLinearOp explicitMultiply(const LinearOp & opl,const LinearOp & opm,const LinearOp & opr,
const ModifiableLinearOp & destOp);
/** \brief Multiply two linear operators.
*
* Multiply two linear operators. This currently assumes
* that the underlying implementation uses Epetra_CrsMatrix.
*
* \param[in] opl Left operator (assumed to be a Epetra_CrsMatrix)
* \param[in] opr Right operator (assumed to be a Epetra_CrsMatrix)
*
* \returns Matrix product with a Epetra_CrsMatrix implementation
*/
const LinearOp explicitMultiply(const LinearOp & opl,const LinearOp & opr);
/** \brief Multiply two linear operators.
*
* Multiply two linear operators. This currently assumes
* that the underlying implementation uses Epetra_CrsMatrix.
* The exception is that opm is allowed to be an diagonal matrix.
*
* \param[in] opl Left operator (assumed to be a Epetra_CrsMatrix)
* \param[in] opr Right operator (assumed to be a Epetra_CrsMatrix)
* \param[in,out] destOp The operator to be used as the destination operator,
* if this is null this function creates a new operator
*
* \returns Matrix product with a Epetra_CrsMatrix implementation
*/
const ModifiableLinearOp explicitMultiply(const LinearOp & opl,const LinearOp & opr,
const ModifiableLinearOp & destOp);
/** \brief Add two linear operators.
*
* Add two linear operators. This currently assumes
* that the underlying implementation uses Epetra_CrsMatrix.
*
* \param[in] opl Left operator (assumed to be a Epetra_CrsMatrix)
* \param[in] opr Right operator (assumed to be a Epetra_CrsMatrix)
*
* \returns Matrix sum with a Epetra_CrsMatrix implementation
*/
const LinearOp explicitAdd(const LinearOp & opl,const LinearOp & opr);
/** \brief Add two linear operators.
*
* Add two linear operators. This currently assumes
* that the underlying implementation uses Epetra_CrsMatrix.
*
* \param[in] opl Left operator (assumed to be a Epetra_CrsMatrix)
* \param[in] opr Right operator (assumed to be a Epetra_CrsMatrix)
* \param[in,out] destOp The operator to be used as the destination operator,
* if this is null this function creates a new operator
*
* \returns Matrix sum with a Epetra_CrsMatrix implementation
*/
const ModifiableLinearOp explicitAdd(const LinearOp & opl,const LinearOp & opr,
const ModifiableLinearOp & destOp);
/** Sum into the modifiable linear op.
*/
const ModifiableLinearOp explicitSum(const LinearOp & opl,
const ModifiableLinearOp & destOp);
/** Build an explicit transpose of a linear operator. (Concrete data
* underneath.
*/
const LinearOp explicitTranspose(const LinearOp & op);
/** Rturn the frobenius norm of a linear operator
*/
double frobeniusNorm(const LinearOp & op);
double oneNorm(const LinearOp & op);
double infNorm(const LinearOp & op);
/** \brief Take the first column of a multivector and build a
* diagonal linear operator
*/
const LinearOp buildDiagonal(const MultiVector & v,const std::string & lbl="ANYM");
/** \brief Using the first column of a multivector, take the elementwise build a
* inverse and build the inverse diagonal operator.
*/
const LinearOp buildInvDiagonal(const MultiVector & v,const std::string & lbl="ANYM");
//@}
/** \brief Compute the spectral radius of a matrix
*
* Compute the spectral radius of matrix A. This utilizes the
* Trilinos-Anasazi BlockKrylovShcur method for computing eigenvalues.
* It attempts to compute the largest (in magnitude) eigenvalue to a given
* level of tolerance.
*
* \param[in] A matrix whose spectral radius is needed
* \param[in] tol The <em>most</em> accuracy needed (the algorithm will run until
* it reaches this level of accuracy and then it will quit).
* If this level is not reached it will return something to indicate
* it has not converged.
* \param[in] isHermitian Is the matrix Hermitian
* \param[in] numBlocks The size of the orthogonal basis built (like in GMRES) before
* restarting. Increase the memory usage by O(restart*n). At least
* restart=3 is required.
* \param[in] restart How many restarts are permitted
* \param[in] verbosity See the Anasazi documentation
*
* \return The spectral radius of the matrix. If the algorithm didn't converge the
* number is the negative of the ritz-values. If a <code>NaN</code> is returned
* there was a problem constructing the Anasazi problem
*/
double computeSpectralRad(const Teuchos::RCP<const Thyra::LinearOpBase<double> > & A,double tol,
bool isHermitian=false,int numBlocks=5,int restart=0,int verbosity=0);
/** \brief Compute the smallest eigenvalue of an operator
*
* Compute the smallest eigenvalue of matrix A. This utilizes the
* Trilinos-Anasazi BlockKrylovShcur method for computing eigenvalues.
* It attempts to compute the smallest (in magnitude) eigenvalue to a given
* level of tolerance.
*
* \param[in] A matrix whose spectral radius is needed
* \param[in] tol The <em>most</em> accuracy needed (the algorithm will run until
* it reaches this level of accuracy and then it will quit).
* If this level is not reached it will return something to indicate
* it has not converged.
* \param[in] isHermitian Is the matrix Hermitian
* \param[in] numBlocks The size of the orthogonal basis built (like in GMRES) before
* restarting. Increase the memory usage by O(restart*n). At least
* restart=3 is required.
* \param[in] restart How many restarts are permitted
* \param[in] verbosity See the Anasazi documentation
*
* \return The smallest magnitude eigenvalue of the matrix. If the algorithm didn't converge the
* number is the negative of the ritz-values. If a <code>NaN</code> is returned
* there was a problem constructing the Anasazi problem
*/
double computeSmallestMagEig(const Teuchos::RCP<const Thyra::LinearOpBase<double> > & A, double tol,
bool isHermitian=false,int numBlocks=5,int restart=0,int verbosity=0);
//! Type describing the type of diagonal to construct.
typedef enum { Diagonal //! Specifies that just the diagonal is used
, Lumped //! Specifies that row sum is used to form a diagonal
, AbsRowSum //! Specifies that the \f$i^{th}\f$ diagonal entry is \f$\sum_j |A_{ij}|\f$
, BlkDiag //! Specifies that a block diagonal approximation is to be used
, NotDiag //! For user convenience, if Teko recieves this value, exceptions will be thrown
} DiagonalType;
/** Get a diagonal operator from a matrix. The mechanism for computing
* the diagonal is specified by a <code>DiagonalType</code> arugment.
*
* \param[in] A <code>Epetra_CrsMatrix</code> to extract the diagonal from.
* \param[in] dt Specifies the type of diagonal that is desired.
*
* \returns A diagonal operator.
*/
ModifiableLinearOp getDiagonalOp(const Teko::LinearOp & A,const DiagonalType & dt);
/** Get the inverse of a diagonal operator from a matrix. The mechanism for computing
* the diagonal is specified by a <code>DiagonalType</code> arugment.
*
* \param[in] A <code>Epetra_CrsMatrix</code> to extract the diagonal from.
* \param[in] dt Specifies the type of diagonal that is desired.
*
* \returns A inverse of a diagonal operator.
*/
ModifiableLinearOp getInvDiagonalOp(const Teko::LinearOp & A,const DiagonalType & dt);
/** \brief Get the diagonal of a sparse linear operator
*
* \param[in] Op Sparse linear operator to get diagonal of
* \param[in] dt Type of diagonal operator required.
*/
const MultiVector getDiagonal(const LinearOp & op,const DiagonalType & dt);
/** Get a string corresponding to the type of digaonal specified.
*
* \param[in] dt The type of diagonal.
*
* \returns A string name representing this diagonal type.
*/
std::string getDiagonalName(const DiagonalType & dt);
/** Get a type corresponding to the name of a diagonal specified.
*
* \param[in] name String representing the diagonal type
*
* \returns The type representation of the string, if the
* string is not recognized this function returns
* a <code>NotDiag</code>
*/
DiagonalType getDiagonalType(std::string name);
LinearOp probe(Teuchos::RCP<const Epetra_CrsGraph> &G, const LinearOp & Op);
/** Get the one norm of the vector
*/
double norm_1(const MultiVector & v,std::size_t col);
/** Get the two norm of the vector
*/
double norm_2(const MultiVector & v,std::size_t col);
/** This replaces entries of a vector falling below a particular
* bound. Thus a an entry will be greater than or equal to \code{lowerBound}.
*/
void clipLower(MultiVector & v,double lowerBound);
/** This replaces entries of a vector above a particular
* bound. Thus a an entry will be less than or equal to \code{upperBound}.
*/
void clipUpper(MultiVector & v,double upperBound);
/** This replaces entries of a vector equal to a particular value
* with a new value.
*/
void replaceValue(MultiVector & v,double currentValue,double newValue);
/** Compute the averages of each column of the multivector.
*/
void columnAverages(const MultiVector & v,std::vector<double> & averages);
/** Compute the average of the solution.
*/
double average(const MultiVector & v);
/** Is this operator a physically blocked linear op?
*/
bool isPhysicallyBlockedLinearOp(const LinearOp & op);
/** Return a physically blocked linear op and whether it is scaled or transpose in its wrapper
*/
Teuchos::RCP<const Thyra::PhysicallyBlockedLinearOpBase<double> > getPhysicallyBlockedLinearOp(const LinearOp & op, ST *scalar, bool *transp);
} // end namespace Teko
#ifdef _MSC_VER
#ifdef TEKO_DEFINED_MSC_EXTENSIONS
#undef _MSC_EXTENSIONS
#endif
#endif
#endif
|