This file is indexed.

/usr/include/trilinos/Teko_Utilities.hpp is in libtrilinos-teko-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
/*
// @HEADER
// 
// ***********************************************************************
// 
//      Teko: A package for block and physics based preconditioning
//                  Copyright 2010 Sandia Corporation 
//  
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//  
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//  
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//  
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//  
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission. 
//  
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//  
// Questions? Contact Eric C. Cyr (eccyr@sandia.gov)
// 
// ***********************************************************************
// 
// @HEADER

*/

/** \file Teko_Utilities.hpp
  *
  * This file contains a number of useful functions and classes
  * used in Teko. They are distinct from the core functionality of
  * the preconditioner factory, however, the functions are critical
  * to construction of the preconditioners themselves.
  */

#ifndef __Teko_Utilities_hpp__
#define __Teko_Utilities_hpp__

#include "Epetra_CrsMatrix.h"
#include "Tpetra_CrsMatrix.hpp"

// Teuchos includes
#include "Teuchos_VerboseObject.hpp"

// Thyra includes
#include "Thyra_LinearOpBase.hpp"
#include "Thyra_PhysicallyBlockedLinearOpBase.hpp"
#include "Thyra_ProductVectorSpaceBase.hpp"
#include "Thyra_VectorSpaceBase.hpp"
#include "Thyra_ProductMultiVectorBase.hpp"
#include "Thyra_MultiVectorStdOps.hpp"
#include "Thyra_MultiVectorBase.hpp"
#include "Thyra_VectorBase.hpp"
#include "Thyra_VectorStdOps.hpp"
#include "Thyra_DefaultBlockedLinearOp.hpp"
#include "Thyra_DefaultMultipliedLinearOp.hpp"
#include "Thyra_DefaultScaledAdjointLinearOp.hpp"
#include "Thyra_DefaultAddedLinearOp.hpp"
#include "Thyra_DefaultIdentityLinearOp.hpp"
#include "Thyra_DefaultZeroLinearOp.hpp"

#include "Teko_ConfigDefs.hpp"

#ifdef _MSC_VER
#ifndef _MSC_EXTENSIONS
#define _MSC_EXTENSIONS
#define TEKO_DEFINED_MSC_EXTENSIONS
#endif
#include <iso646.h> // For C alternative tokens
#endif

// #define Teko_DEBUG_OFF
#define Teko_DEBUG_INT 5

namespace Teko {

using Thyra::multiply;
using Thyra::scale;
using Thyra::add;
using Thyra::identity;
using Thyra::zero; // make it to take one argument (square matrix)
using Thyra::block2x2;
using Thyra::block2x1;
using Thyra::block1x2;

/** \brief Build a graph Laplacian stenciled on a Epetra_CrsMatrix.
  *
  * This function builds a graph Laplacian given a (locally complete)
  * vector of coordinates and a stencil Epetra_CrsMatrix (could this be
  * a graph of Epetra_RowMatrix instead?). The resulting matrix will have
  * the negative of the inverse distance on off diagonals. And the sum
  * of the positive inverse distance of the off diagonals on the diagonal.
  * If there are no off diagonal entries in the stencil, the diagonal is
  * set to 0.
  *
  * \param[in]     dim     Number of physical dimensions (2D or 3D?).
  * \param[in]     coords  A vector containing the coordinates, with the <code>i</code>-th
  *                        coordinate beginning at <code>coords[i*dim]</code>.
  * \param[in]     stencil The stencil matrix used to describe the connectivity
  *                        of the graph Laplacian matrix.
  *
  * \returns The graph Laplacian matrix to be filled according to the <code>stencil</code> matrix.
  */
Teuchos::RCP<Epetra_CrsMatrix> buildGraphLaplacian(int dim,double * coords,const Epetra_CrsMatrix & stencil);
Teuchos::RCP<Tpetra::CrsMatrix<ST,LO,GO,NT> > buildGraphLaplacian(int dim,ST * coords,const Tpetra::CrsMatrix<ST,LO,GO,NT> & stencil);

/** \brief Build a graph Laplacian stenciled on a Epetra_CrsMatrix.
  *
  * This function builds a graph Laplacian given a (locally complete)
  * vector of coordinates and a stencil Epetra_CrsMatrix (could this be
  * a graph of Epetra_RowMatrix instead?). The resulting matrix will have
  * the negative of the inverse distance on off diagonals. And the sum
  * of the positive inverse distance of the off diagonals on the diagonal.
  * If there are no off diagonal entries in the stencil, the diagonal is
  * set to 0.
  *
  * \param[in]     x       A vector containing the x-coordinates, with the <code>i</code>-th
  *                        coordinate beginning at <code>coords[i*stride]</code>.
  * \param[in]     y       A vector containing the y-coordinates, with the <code>i</code>-th
  *                        coordinate beginning at <code>coords[i*stride]</code>.
  * \param[in]     z       A vector containing the z-coordinates, with the <code>i</code>-th
  *                        coordinate beginning at <code>coords[i*stride]</code>.
  * \param[in]     stride  Stride between entries in the (x,y,z) coordinate array
  * \param[in]     stencil The stencil matrix used to describe the connectivity
  *                        of the graph Laplacian matrix.
  *
  * \returns The graph Laplacian matrix to be filled according to the <code>stencil</code> matrix.
  */
Teuchos::RCP<Epetra_CrsMatrix> buildGraphLaplacian(double * x,double * y,double * z,int stride,const Epetra_CrsMatrix & stencil);
Teuchos::RCP<Tpetra::CrsMatrix<ST,LO,GO,NT> > buildGraphLaplacian(ST * x,ST * y,ST * z,GO stride,const Tpetra::CrsMatrix<ST,LO,GO,NT> & stencil);

/** \brief Function used internally by Teko to find the output stream.
  * 
  * Function used internally by Teko to find the output stream.
  *
  * \returns An output stream to use for printing
  */
const Teuchos::RCP<Teuchos::FancyOStream> getOutputStream();
// inline const Teuchos::RCP<Teuchos::FancyOStream> getOutputStream();
// { return Teuchos::VerboseObjectBase::getDefaultOStream(); }

#ifndef Teko_DEBUG_OFF
//#if 0
   #define Teko_DEBUG_EXPR(str) str
   #define Teko_DEBUG_MSG(str,level) if(level<=Teko_DEBUG_INT) { \
      Teuchos::RCP<Teuchos::FancyOStream> out = Teko::getOutputStream(); \
      *out << "Teko: " << str << std::endl; }
   #define Teko_DEBUG_MSG_BEGIN(level) if(level<=Teko_DEBUG_INT) { \
      Teko::getOutputStream()->pushTab(3); \
      *Teko::getOutputStream() << "Teko: Begin debug MSG\n"; \
      std::ostream & DEBUG_STREAM = *Teko::getOutputStream(); \
      Teko::getOutputStream()->pushTab(3);
   #define Teko_DEBUG_MSG_END() Teko::getOutputStream()->popTab(); \
                             *Teko::getOutputStream() << "Teko: End debug MSG\n"; \
                              Teko::getOutputStream()->popTab(); }
   #define Teko_DEBUG_PUSHTAB() Teko::getOutputStream()->pushTab(3)
   #define Teko_DEBUG_POPTAB() Teko::getOutputStream()->popTab()
   #define Teko_DEBUG_SCOPE(str,level)

//   struct __DebugScope__ {
//      __DebugScope__(const std::string & str,int level)
//         : str_(str), level_(level)
//      { Teko_DEBUG_MSG("BEGIN "+str_,level_); Teko_DEBUG_PUSHTAB(); }      
//      ~__DebugScope__()
//      { Teko_DEBUG_POPTAB(); Teko_DEBUG_MSG("END "+str_,level_); } 
//      std::string str_; int level_; };
//   #define Teko_DEBUG_SCOPE(str,level) __DebugScope__ __dbgScope__(str,level);
#else 
   #define Teko_DEBUG_EXPR(str)
   #define Teko_DEBUG_MSG(str,level)
   #define Teko_DEBUG_MSG_BEGIN(level) if(false) { \
      std::ostream & DEBUG_STREAM = *Teko::getOutputStream();
   #define Teko_DEBUG_MSG_END() }
   #define Teko_DEBUG_PUSHTAB() 
   #define Teko_DEBUG_POPTAB() 
   #define Teko_DEBUG_SCOPE(str,level)
#endif

// typedefs for increased simplicity
typedef Teuchos::RCP<const Thyra::VectorSpaceBase<double> > VectorSpace;

// ----------------------------------------------------------------------------

//! @name MultiVector utilities
//@{

typedef Teuchos::RCP<Thyra::ProductMultiVectorBase<double> > BlockedMultiVector;
typedef Teuchos::RCP<Thyra::MultiVectorBase<double> > MultiVector;

//! Convert to a MultiVector from a BlockedMultiVector
inline MultiVector toMultiVector(BlockedMultiVector & bmv) { return bmv; }

//! Convert to a MultiVector from a BlockedMultiVector
inline const MultiVector toMultiVector(const BlockedMultiVector & bmv) { return bmv; }

//! Convert to a BlockedMultiVector from a MultiVector
inline const BlockedMultiVector toBlockedMultiVector(const MultiVector & bmv) 
{ return Teuchos::rcp_dynamic_cast<Thyra::ProductMultiVectorBase<double> >(bmv); }

//! Get the column count in a block linear operator
inline int blockCount(const BlockedMultiVector & bmv)
{ return bmv->productSpace()->numBlocks(); }

//! Get the <code>i</code>th block from a BlockedMultiVector object
inline MultiVector getBlock(int i,const BlockedMultiVector & bmv)
{ return Teuchos::rcp_const_cast<Thyra::MultiVectorBase<double> >(bmv->getMultiVectorBlock(i)); }

//! Perform a deep copy of the vector
inline MultiVector deepcopy(const MultiVector & v)
{ return v->clone_mv(); }

//! Perform a deep copy of the vector
inline MultiVector copyAndInit(const MultiVector & v,double scalar)
{ MultiVector mv = v->clone_mv(); Thyra::assign(mv.ptr(),scalar); return mv; }

//! Perform a deep copy of the blocked vector
inline BlockedMultiVector deepcopy(const BlockedMultiVector & v)
{ return toBlockedMultiVector(v->clone_mv()); }

/** \brief Copy the contents of a multivector to a destination vector.
  *
  * Copy the contents of a multivector to a new vector. If the destination
  * vector is null, a deep copy of the source multivector is made to a newly allocated
  * vector. Also, if the destination and the source do not match, a new destination
  * object is allocated and returned to the user.
  *
  * \param[in] src Source multivector to be copied.
  * \param[in] dst Destination multivector.  If null a new multivector will be allocated.
  *
  * \returns A copy of the source multivector. If dst is not null a pointer to this object
  *          is returned. Otherwise a new multivector is returned.
  */
inline MultiVector datacopy(const MultiVector & src,MultiVector & dst)
{ 
   if(dst==Teuchos::null)
      return deepcopy(src);

   bool rangeCompat = src->range()->isCompatible(*dst->range());
   bool domainCompat = src->domain()->isCompatible(*dst->domain());
 
   if(not (rangeCompat && domainCompat))
      return deepcopy(src);

   // perform data copy
   Thyra::assign<double>(dst.ptr(),*src);
   return dst;
}

/** \brief Copy the contents of a blocked multivector to a destination vector.
  *
  * Copy the contents of a blocked multivector to a new vector. If the destination
  * vector is null, a deep copy of the source multivector is made to a newly allocated
  * vector. Also, if the destination and the source do not match, a new destination
  * object is allocated and returned to the user.
  *
  * \param[in] src Source multivector to be copied.
  * \param[in] dst Destination multivector.  If null a new multivector will be allocated.
  *
  * \returns A copy of the source multivector. If dst is not null a pointer to this object
  *          is returned. Otherwise a new multivector is returned.
  */
inline BlockedMultiVector datacopy(const BlockedMultiVector & src,BlockedMultiVector & dst)
{ 
   if(dst==Teuchos::null)
      return deepcopy(src);

   bool rangeCompat = src->range()->isCompatible(*dst->range());
   bool domainCompat = src->domain()->isCompatible(*dst->domain());

   if(not (rangeCompat && domainCompat))
      return deepcopy(src);

   // perform data copy
   Thyra::assign<double>(dst.ptr(),*src);
   return dst;
}

//! build a BlockedMultiVector from a vector of MultiVectors
BlockedMultiVector buildBlockedMultiVector(const std::vector<MultiVector> & mvs);

/** Construct an indicator vector specified by a vector of indices to 
  * be set to ``on''.
  *
  * \param[in] indices Vector of indicies to turn on
  * \param[in] vs Vector space to construct the vector from
  * \param[in] onValue Value to set in the vector to on
  * \param[in] offValue Value to set in the vector to off
  *
  * \return Vector of on and off values.
  */
Teuchos::RCP<Thyra::VectorBase<double> > indicatorVector(
                                 const std::vector<int> & indices,
                                 const VectorSpace & vs,
                                 double onValue=1.0, double offValue=0.0);

//@}

// ----------------------------------------------------------------------------

//! @name LinearOp utilities
//@{
typedef Teuchos::RCP<Thyra::PhysicallyBlockedLinearOpBase<ST> > BlockedLinearOp;
typedef Teuchos::RCP<const Thyra::LinearOpBase<ST> > LinearOp;
typedef Teuchos::RCP<Thyra::LinearOpBase<ST> > InverseLinearOp;
typedef Teuchos::RCP<Thyra::LinearOpBase<ST> > ModifiableLinearOp;

//! Build a square zero operator from a single vector space
inline LinearOp zero(const VectorSpace & vs)
{ return Thyra::zero<ST>(vs,vs); }

//! Replace nonzeros with a scalar value, used to zero out an operator
void putScalar(const ModifiableLinearOp & op,double scalar);

//! Get the range space of a linear operator
inline VectorSpace rangeSpace(const LinearOp & lo)
{ return lo->range(); }

//! Get the domain space of a linear operator
inline VectorSpace domainSpace(const LinearOp & lo)
{ return lo->domain(); }

//! Converts a LinearOp to a BlockedLinearOp
inline BlockedLinearOp toBlockedLinearOp(LinearOp & clo)
{
   Teuchos::RCP<Thyra::LinearOpBase<double> > lo = Teuchos::rcp_const_cast<Thyra::LinearOpBase<double> >(clo);
   return Teuchos::rcp_dynamic_cast<Thyra::PhysicallyBlockedLinearOpBase<double> > (lo);
}

//! Converts a LinearOp to a BlockedLinearOp
inline const BlockedLinearOp toBlockedLinearOp(const LinearOp & clo)
{
   Teuchos::RCP<Thyra::LinearOpBase<double> > lo = Teuchos::rcp_const_cast<Thyra::LinearOpBase<double> >(clo);
   return Teuchos::rcp_dynamic_cast<Thyra::PhysicallyBlockedLinearOpBase<double> > (lo);
}

//! Convert to a LinearOp from a BlockedLinearOp
inline LinearOp toLinearOp(BlockedLinearOp & blo) { return blo; }

//! Convert to a LinearOp from a BlockedLinearOp
inline const LinearOp toLinearOp(const BlockedLinearOp & blo) { return blo; }

//! Convert to a LinearOp from a BlockedLinearOp
inline LinearOp toLinearOp(ModifiableLinearOp & blo) { return blo; }

//! Convert to a LinearOp from a BlockedLinearOp
inline const LinearOp toLinearOp(const ModifiableLinearOp & blo) { return blo; }

//! Get the row count in a block linear operator
inline int blockRowCount(const BlockedLinearOp & blo)
{ return blo->productRange()->numBlocks(); }

//! Get the column count in a block linear operator
inline int blockColCount(const BlockedLinearOp & blo)
{ return blo->productDomain()->numBlocks(); }

//! Get the <code>i,j</code> block in a BlockedLinearOp object
inline LinearOp getBlock(int i,int j,const BlockedLinearOp & blo)
{ return blo->getBlock(i,j); }

//! Set the <code>i,j</code> block in a BlockedLinearOp object
inline void setBlock(int i,int j,BlockedLinearOp & blo, const LinearOp & lo)
{ return blo->setBlock(i,j,lo); }

//! Build a new blocked linear operator
inline BlockedLinearOp createBlockedOp()
{ return rcp(new Thyra::DefaultBlockedLinearOp<double>()); }

/** \brief Let the blocked operator know that you are going to 
  *        set the sub blocks.
  *
  * Let the blocked operator know that you are going to 
  * set the sub blocks. This is a simple wrapper around the
  * member function of the same name in Thyra.
  *
  * \param[in,out] blo Blocked operator to have its fill stage activated
  * \param[in]  rowCnt Number of block rows in this operator
  * \param[in]  colCnt Number of block columns in this operator
  */
inline void beginBlockFill(BlockedLinearOp & blo,int rowCnt,int colCnt)
{ blo->beginBlockFill(rowCnt,colCnt); }

/** \brief Let the blocked operator know that you are going to 
  *        set the sub blocks.
  *
  * Let the blocked operator know that you are going to 
  * set the sub blocks. This is a simple wrapper around the
  * member function of the same name in Thyra.
  *
  * \param[in,out] blo Blocked operator to have its fill stage activated
  */
inline void beginBlockFill(BlockedLinearOp & blo)
{ blo->beginBlockFill(); }

//! Notify the blocked operator that the fill stage is completed.
inline void endBlockFill(BlockedLinearOp & blo)
{ blo->endBlockFill(); }

//! Get the strictly upper triangular portion of the matrix
BlockedLinearOp getUpperTriBlocks(const BlockedLinearOp & blo,bool callEndBlockFill=true);

//! Get the strictly lower triangular portion of the matrix
BlockedLinearOp getLowerTriBlocks(const BlockedLinearOp & blo,bool callEndBlockFill=true);

/** \brief Build a zero operator mimicing the block structure
  *        of the passed in matrix.
  *
  * Build a zero operator mimicing the block structure
  * of the passed in matrix. Currently this function assumes
  * that the operator is "block" square. Also, this function
  * calls <code>beginBlockFill</code> but does not call
  * <code>endBlockFill</code>.  This is so that the user
  * can fill the matrix as they wish once created.
  *
  * \param[in] blo Blocked operator with desired structure.
  *
  * \returns A zero operator with the same block structure as
  *          the argument <code>blo</code>.
  *
  * \note The caller is responsible for calling
  *       <code>endBlockFill</code> on the returned blocked
  *       operator.
  */
BlockedLinearOp zeroBlockedOp(const BlockedLinearOp & blo);

//! Figure out if this operator is the zero operator (or null!)
bool isZeroOp(const LinearOp op);

/** \brief Compute absolute row sum matrix.
  *
  * Compute the absolute row sum matrix. That is
  * a diagonal operator composed of the absolute value of the
  * row sum.
  *
  * \returns A diagonal operator.
  */
ModifiableLinearOp getAbsRowSumMatrix(const LinearOp & op);

/** \brief Compute inverse of the absolute row sum matrix.
  *
  * Compute the inverse of the absolute row sum matrix. That is
  * a diagonal operator composed of the inverse of the absolute value
  * of the row sum.
  *
  * \returns A diagonal operator.
  */
ModifiableLinearOp getAbsRowSumInvMatrix(const LinearOp & op);

/** \brief Compute the lumped version of this matrix.
  *
  * Compute the lumped version of this matrix. That is
  * a diagonal operator composed of the row sum.
  *
  * \returns A diagonal operator.
  */
ModifiableLinearOp getLumpedMatrix(const LinearOp & op);

/** \brief Compute the inverse of the lumped version of
  *        this matrix.
  *
  * Compute the inverse of the lumped version of this matrix.
  * That is a diagonal operator composed of the row sum.
  *
  * \returns A diagonal operator.
  */
ModifiableLinearOp getInvLumpedMatrix(const LinearOp & op);

//@}

//! @name Mathematical functions
//@{

/** \brief Apply a linear operator to a multivector (think of this as a matrix
  *        vector multiply).
  *
  * Apply a linear operator to a multivector. This also permits arbitrary scaling
  * and addition of the result. This function gives
  *     
  *    \f$ y = \alpha A x + \beta y \f$
  *
  * It is required that the range space of <code>A</code> is compatible with <code>y</code> and the domain space
  * of <code>A</code> is compatible with <code>x</code>.
  *
  * \param[in]     A
  * \param[in]     x
  * \param[in,out] y
  * \param[in]     alpha
  * \param[in]     beta
  *
  */
void applyOp(const LinearOp & A,const MultiVector & x,MultiVector & y,double alpha=1.0,double beta=0.0);


/** \brief Apply a transposed linear operator to a multivector (think of this as a matrix
  *        vector multiply).
  *
  * Apply a transposed linear operator to a multivector. This also permits arbitrary scaling
  * and addition of the result. This function gives
  *     
  *    \f$ y = \alpha A^T x + \beta y \f$
  *
  * It is required that the domain space of <code>A</code> is compatible with <code>y</code> and the range space
  * of <code>A</code> is compatible with <code>x</code>.
  *
  * \param[in]     A
  * \param[in]     x
  * \param[in,out] y
  * \param[in]     alpha
  * \param[in]     beta
  *
  */
void applyTransposeOp(const LinearOp & A,const MultiVector & x,MultiVector & y,double alpha=1.0,double beta=0.0);

/** \brief Apply a linear operator to a blocked multivector (think of this as a matrix
  *        vector multiply).
  *
  * Apply a linear operator to a blocked multivector. This also permits arbitrary scaling
  * and addition of the result. This function gives
  *     
  *    \f$ y = \alpha A x + \beta y \f$
  *
  * It is required that the range space of <code>A</code> is compatible with <code>y</code> and the domain space
  * of <code>A</code> is compatible with <code>x</code>.
  *
  * \param[in]     A
  * \param[in]     x
  * \param[in,out] y
  * \param[in]     alpha
  * \param[in]     beta
  *
  */
inline void applyOp(const LinearOp & A,const BlockedMultiVector & x,BlockedMultiVector & y,double alpha=1.0,double beta=0.0)
{ const MultiVector x_mv = toMultiVector(x); MultiVector y_mv = toMultiVector(y);
  applyOp(A,x_mv,y_mv,alpha,beta); }

/** \brief Apply a transposed linear operator to a blocked multivector (think of this as a matrix
  *        vector multiply).
  *
  * Apply a transposed linear operator to a blocked multivector. This also permits arbitrary scaling
  * and addition of the result. This function gives
  *     
  *    \f$ y = \alpha A^T x + \beta y \f$
  *
  * It is required that the domain space of <code>A</code> is compatible with <code>y</code> and the range space
  * of <code>A</code> is compatible with <code>x</code>.
  *
  * \param[in]     A
  * \param[in]     x
  * \param[in,out] y
  * \param[in]     alpha
  * \param[in]     beta
  *
  */
inline void applyTransposeOp(const LinearOp & A,const BlockedMultiVector & x,BlockedMultiVector & y,double alpha=1.0,double beta=0.0)
{ const MultiVector x_mv = toMultiVector(x); MultiVector y_mv = toMultiVector(y);
  applyTransposeOp(A,x_mv,y_mv,alpha,beta); }

/** \brief Update the <code>y</code> vector so that \f$y = \alpha x+\beta y\f$
  *
  * Compute the linear combination \f$y=\alpha x + \beta y\f$. 
  *
  * \param[in]     alpha
  * \param[in]     x 
  * \param[in]     beta 
  * \param[in,out] y
  */
void update(double alpha,const MultiVector & x,double beta,MultiVector & y);

//! \brief Update for a BlockedMultiVector
inline void update(double alpha,const BlockedMultiVector & x,double beta,BlockedMultiVector & y)
{ MultiVector x_mv = toMultiVector(x); MultiVector y_mv = toMultiVector(y);
  update(alpha,x_mv,beta,y_mv); }

//! Scale a multivector by a constant
inline void scale(const double alpha,MultiVector & x) { Thyra::scale<double>(alpha,x.ptr()); }

//! Scale a multivector by a constant
inline void scale(const double alpha,BlockedMultiVector & x) 
{  MultiVector x_mv = toMultiVector(x); scale(alpha,x_mv); }

//! Scale a modifiable linear op by a constant
inline LinearOp scale(const double alpha,ModifiableLinearOp & a) 
{  return Thyra::nonconstScale(alpha,a); }

//! Construct an implicit adjoint of the linear operators
inline LinearOp adjoint(ModifiableLinearOp & a) 
{  return Thyra::nonconstAdjoint(a); }

//@}

//! \name Epetra_Operator specific functions
//@{

/** \brief Get the diaonal of a linear operator
  *
  * Get the diagonal of a linear operator. Currently
  * it is assumed that the underlying operator is
  * an Epetra_RowMatrix.
  *
  * \param[in] op The operator whose diagonal is to be
  *               extracted.
  *
  * \returns An diagonal operator.
  */
const ModifiableLinearOp getDiagonalOp(const LinearOp & op);

/** \brief Get the diagonal of a linear operator
  *
  * Get the diagonal of a linear operator, putting it
  * in the first column of a multivector.
  */
const MultiVector getDiagonal(const LinearOp & op);

/** \brief Get the diaonal of a linear operator
  *
  * Get the inverse of the diagonal of a linear operator.
  * Currently it is assumed that the underlying operator is
  * an Epetra_RowMatrix.
  *
  * \param[in] op The operator whose diagonal is to be
  *               extracted and inverted
  *
  * \returns An diagonal operator.
  */
const ModifiableLinearOp getInvDiagonalOp(const LinearOp & op);

/** \brief Multiply three linear operators. 
  *
  * Multiply three linear operators. This currently assumes
  * that the underlying implementation uses Epetra_CrsMatrix.
  * The exception is that opm is allowed to be an diagonal matrix.
  *
  * \param[in] opl Left operator (assumed to be a Epetra_CrsMatrix)
  * \param[in] opm Middle operator (assumed to be a Epetra_CrsMatrix or a diagonal matrix)
  * \param[in] opr Right operator (assumed to be a Epetra_CrsMatrix)
  *
  * \returns Matrix product with a Epetra_CrsMatrix implementation
  */
const LinearOp explicitMultiply(const LinearOp & opl,const LinearOp & opm,const LinearOp & opr);

/** \brief Multiply three linear operators. 
  *
  * Multiply three linear operators. This currently assumes
  * that the underlying implementation uses Epetra_CrsMatrix.
  * The exception is that opm is allowed to be an diagonal matrix.
  *
  * \param[in] opl Left operator (assumed to be a Epetra_CrsMatrix)
  * \param[in] opm Middle operator (assumed to be a Epetra_CrsMatrix or a diagonal matrix)
  * \param[in] opr Right operator (assumed to be a Epetra_CrsMatrix)
  * \param[in,out] destOp The operator to be used as the destination operator,
  *                       if this is null this function creates a new operator
  *
  * \returns Matrix product with a Epetra_CrsMatrix implementation
  */
const ModifiableLinearOp explicitMultiply(const LinearOp & opl,const LinearOp & opm,const LinearOp & opr,
                                          const ModifiableLinearOp & destOp);

/** \brief Multiply two linear operators. 
  *
  * Multiply two linear operators. This currently assumes
  * that the underlying implementation uses Epetra_CrsMatrix.
  *
  * \param[in] opl Left operator (assumed to be a Epetra_CrsMatrix)
  * \param[in] opr Right operator (assumed to be a Epetra_CrsMatrix)
  *
  * \returns Matrix product with a Epetra_CrsMatrix implementation
  */
const LinearOp explicitMultiply(const LinearOp & opl,const LinearOp & opr);

/** \brief Multiply two linear operators. 
  *
  * Multiply two linear operators. This currently assumes
  * that the underlying implementation uses Epetra_CrsMatrix.
  * The exception is that opm is allowed to be an diagonal matrix.
  *
  * \param[in] opl Left operator (assumed to be a Epetra_CrsMatrix)
  * \param[in] opr Right operator (assumed to be a Epetra_CrsMatrix)
  * \param[in,out] destOp The operator to be used as the destination operator,
  *                       if this is null this function creates a new operator
  *
  * \returns Matrix product with a Epetra_CrsMatrix implementation
  */
const ModifiableLinearOp explicitMultiply(const LinearOp & opl,const LinearOp & opr,
                                          const ModifiableLinearOp & destOp);

/** \brief Add two linear operators. 
  *
  * Add two linear operators. This currently assumes
  * that the underlying implementation uses Epetra_CrsMatrix.
  *
  * \param[in] opl Left operator (assumed to be a Epetra_CrsMatrix)
  * \param[in] opr Right operator (assumed to be a Epetra_CrsMatrix)
  *
  * \returns Matrix sum with a Epetra_CrsMatrix implementation
  */
const LinearOp explicitAdd(const LinearOp & opl,const LinearOp & opr);

/** \brief Add two linear operators. 
  *
  * Add two linear operators. This currently assumes
  * that the underlying implementation uses Epetra_CrsMatrix.
  *
  * \param[in] opl Left operator (assumed to be a Epetra_CrsMatrix)
  * \param[in] opr Right operator (assumed to be a Epetra_CrsMatrix)
  * \param[in,out] destOp The operator to be used as the destination operator,
  *                       if this is null this function creates a new operator
  *
  * \returns Matrix sum with a Epetra_CrsMatrix implementation
  */
const ModifiableLinearOp explicitAdd(const LinearOp & opl,const LinearOp & opr,
                                     const ModifiableLinearOp & destOp);

/** Sum into the modifiable linear op.
  */
const ModifiableLinearOp explicitSum(const LinearOp & opl,
                                     const ModifiableLinearOp & destOp);

/** Build an explicit transpose of a linear operator. (Concrete data
  * underneath.
  */
const LinearOp explicitTranspose(const LinearOp & op);

/** Rturn the frobenius norm of a linear operator
  */
double frobeniusNorm(const LinearOp & op);
double oneNorm(const LinearOp & op);
double infNorm(const LinearOp & op);

/** \brief Take the first column of a multivector and build a
  *        diagonal linear operator
  */
const LinearOp buildDiagonal(const MultiVector & v,const std::string & lbl="ANYM");

/** \brief Using the first column of a multivector, take the elementwise build a
  *        inverse and build the inverse diagonal operator.
  */
const LinearOp buildInvDiagonal(const MultiVector & v,const std::string & lbl="ANYM");

//@}

/** \brief Compute the spectral radius of a matrix
  *
  * Compute the spectral radius of matrix A.  This utilizes the 
  * Trilinos-Anasazi BlockKrylovShcur method for computing eigenvalues.
  * It attempts to compute the largest (in magnitude) eigenvalue to a given
  * level of tolerance.
  *
  * \param[in] A   matrix whose spectral radius is needed
  * \param[in] tol The <em>most</em> accuracy needed (the algorithm will run until
  *            it reaches this level of accuracy and then it will quit).
  *            If this level is not reached it will return something to indicate
  *            it has not converged.
  * \param[in] isHermitian Is the matrix Hermitian
  * \param[in] numBlocks The size of the orthogonal basis built (like in GMRES) before
  *                  restarting.  Increase the memory usage by O(restart*n). At least
  *                  restart=3 is required.
  * \param[in] restart How many restarts are permitted
  * \param[in] verbosity See the Anasazi documentation
  *
  * \return The spectral radius of the matrix.  If the algorithm didn't converge the
  *         number is the negative of the ritz-values. If a <code>NaN</code> is returned
  *         there was a problem constructing the Anasazi problem
  */
double computeSpectralRad(const Teuchos::RCP<const Thyra::LinearOpBase<double> > & A,double tol,
                          bool isHermitian=false,int numBlocks=5,int restart=0,int verbosity=0);

/** \brief Compute the smallest eigenvalue of an operator
  *
  * Compute the smallest eigenvalue of matrix A.  This utilizes the 
  * Trilinos-Anasazi BlockKrylovShcur method for computing eigenvalues.
  * It attempts to compute the smallest (in magnitude) eigenvalue to a given
  * level of tolerance.
  *
  * \param[in] A   matrix whose spectral radius is needed
  * \param[in] tol The <em>most</em> accuracy needed (the algorithm will run until
  *            it reaches this level of accuracy and then it will quit).
  *            If this level is not reached it will return something to indicate
  *            it has not converged.
  * \param[in] isHermitian Is the matrix Hermitian
  * \param[in] numBlocks The size of the orthogonal basis built (like in GMRES) before
  *                  restarting.  Increase the memory usage by O(restart*n). At least
  *                  restart=3 is required.
  * \param[in] restart How many restarts are permitted
  * \param[in] verbosity See the Anasazi documentation
  *
  * \return The smallest magnitude eigenvalue of the matrix.  If the algorithm didn't converge the
  *         number is the negative of the ritz-values. If a <code>NaN</code> is returned
  *         there was a problem constructing the Anasazi problem
  */
double computeSmallestMagEig(const Teuchos::RCP<const Thyra::LinearOpBase<double> > & A, double tol,
                          bool isHermitian=false,int numBlocks=5,int restart=0,int verbosity=0);

//! Type describing the type of diagonal to construct. 
typedef enum {  Diagonal     //! Specifies that just the diagonal is used
              , Lumped       //! Specifies that row sum is used to form a diagonal
              , AbsRowSum    //! Specifies that the \f$i^{th}\f$ diagonal entry is \f$\sum_j |A_{ij}|\f$
	      , BlkDiag      //! Specifies that a block diagonal approximation is to be used
              , NotDiag      //! For user convenience, if Teko recieves this value, exceptions will be thrown	      
              } DiagonalType;

/** Get a diagonal operator from a matrix. The mechanism for computing
  * the diagonal is specified by a <code>DiagonalType</code> arugment.
  *
  * \param[in] A <code>Epetra_CrsMatrix</code> to extract the diagonal from.
  * \param[in] dt Specifies the type of diagonal that is desired.
  *
  * \returns A diagonal operator.
  */
ModifiableLinearOp getDiagonalOp(const Teko::LinearOp & A,const DiagonalType & dt);

/** Get the inverse of a diagonal operator from a matrix. The mechanism for computing
  * the diagonal is specified by a <code>DiagonalType</code> arugment.
  *
  * \param[in] A <code>Epetra_CrsMatrix</code> to extract the diagonal from.
  * \param[in] dt Specifies the type of diagonal that is desired.
  *
  * \returns A inverse of a diagonal operator.
  */
ModifiableLinearOp getInvDiagonalOp(const Teko::LinearOp & A,const DiagonalType & dt);

/** \brief Get the diagonal of a sparse linear operator
  *
  * \param[in] Op Sparse linear operator to get diagonal of
  * \param[in] dt Type of diagonal operator required.
  */
const MultiVector getDiagonal(const LinearOp & op,const DiagonalType & dt);

/** Get a string corresponding to the type of digaonal specified.
  *
  * \param[in] dt The type of diagonal.
  *
  * \returns A string name representing this diagonal type.
  */
std::string getDiagonalName(const DiagonalType & dt);

/** Get a type corresponding to the name of a diagonal specified.
  *
  * \param[in] name String representing the diagonal type
  *
  * \returns The type representation of the string, if the
  *          string is not recognized this function returns
  *          a <code>NotDiag</code>
  */
DiagonalType getDiagonalType(std::string name);

LinearOp probe(Teuchos::RCP<const Epetra_CrsGraph> &G, const LinearOp & Op);

/** Get the one norm of the vector
  */
double norm_1(const MultiVector & v,std::size_t col);

/** Get the two norm of the vector
  */
double norm_2(const MultiVector & v,std::size_t col);

/** This replaces entries of a vector falling below a particular
  * bound. Thus a an entry will be greater than or equal to \code{lowerBound}.
  */
void clipLower(MultiVector & v,double lowerBound);

/** This replaces entries of a vector above a particular
  * bound. Thus a an entry will be less than or equal to \code{upperBound}.
  */
void clipUpper(MultiVector & v,double upperBound);

/** This replaces entries of a vector equal to a particular value
  * with a new value.
  */
void replaceValue(MultiVector & v,double currentValue,double newValue);

/** Compute the averages of each column of the multivector.
  */
void columnAverages(const MultiVector & v,std::vector<double> & averages);

/** Compute the average of the solution.
  */
double average(const MultiVector & v);

/** Is this operator a physically blocked linear op?
  */
bool isPhysicallyBlockedLinearOp(const LinearOp & op);

/** Return a physically blocked linear op and whether it is scaled or transpose in its wrapper
  */
Teuchos::RCP<const Thyra::PhysicallyBlockedLinearOpBase<double> > getPhysicallyBlockedLinearOp(const LinearOp & op, ST *scalar, bool *transp);

} // end namespace Teko

#ifdef _MSC_VER
#ifdef TEKO_DEFINED_MSC_EXTENSIONS
#undef _MSC_EXTENSIONS
#endif
#endif

#endif