/usr/include/trilinos/TbbTsqr_TbbRecursiveTsqr_Def.hpp is in libtrilinos-tpetra-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef __TSQR_TBB_TbbRecursiveTsqr_Def_hpp
#define __TSQR_TBB_TbbRecursiveTsqr_Def_hpp
#include <TbbTsqr_TbbRecursiveTsqr.hpp>
#include <Tsqr_Util.hpp>
// #define TBB_DEBUG 1
#ifdef TBB_DEBUG
# include <iostream>
using std::cerr;
using std::endl;
#endif // TBB_DEBUG
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
namespace TSQR {
namespace TBB {
template< class LocalOrdinal, class Scalar >
void
TbbRecursiveTsqr< LocalOrdinal, Scalar >::
explicit_Q_helper (const size_t P_first,
const size_t P_last,
mat_view& Q_out,
const bool contiguous_cache_blocks) const
{
if (P_first > P_last || Q_out.empty ()) {
return;
}
else if (P_first == P_last) {
CacheBlocker< LocalOrdinal, Scalar >
blocker (Q_out.nrows(), Q_out.ncols(),
seq_.cache_blocking_strategy());
#ifdef TBB_DEBUG
cerr << "explicit_Q_helper: On P_first = " << P_first
<< ", filling Q_out with zeros:" << endl
<< "Q_out is " << Q_out.nrows() << " x " << Q_out.ncols()
<< " with leading dimension " << Q_out.lda() << endl;
#endif // TBB_DEBUG
// Fill my partition with zeros.
blocker.fill_with_zeros (Q_out, contiguous_cache_blocks);
// If our partition is the first (topmost), fill it with
// the first Q_out.ncols() columns of the identity matrix.
if (P_first == 0) {
// Fetch the topmost cache block of my partition. Its
// leading dimension should be set correctly by
// top_block().
mat_view Q_out_top =
blocker.top_block (Q_out, contiguous_cache_blocks);
for (LocalOrdinal j = 0; j < Q_out_top.ncols(); ++j)
Q_out_top(j,j) = Scalar(1);
}
}
else {
// Recurse on two intervals: [P_first, P_mid] and [P_mid+1, P_last]
const size_t P_mid = (P_first + P_last) / 2;
split_t Q_out_split =
partitioner_.split (Q_out, P_first, P_mid, P_last,
contiguous_cache_blocks);
explicit_Q_helper (P_first, P_mid, Q_out_split.first,
contiguous_cache_blocks);
explicit_Q_helper (P_mid+1, P_last, Q_out_split.second,
contiguous_cache_blocks);
}
}
template< class LocalOrdinal, class Scalar >
typename TbbRecursiveTsqr< LocalOrdinal, Scalar >::mat_view
TbbRecursiveTsqr< LocalOrdinal, Scalar >::
factor_helper (const size_t P_first,
const size_t P_last,
const size_t depth,
mat_view A,
std::vector<typename TbbRecursiveTsqr<LocalOrdinal, Scalar>::SeqOutput>& seq_outputs,
typename TbbRecursiveTsqr<LocalOrdinal, Scalar>::ParOutput& par_outputs,
Scalar R[],
const LocalOrdinal ldr,
const bool contiguous_cache_blocks) const
{
mat_view A_top;
if (P_first > P_last || A.empty()) {
return A;
}
else if (P_first == P_last) {
std::pair<SeqOutput, mat_view> results =
seq_.factor (A.nrows(), A.ncols(), A.get(), A.lda(),
contiguous_cache_blocks);
seq_outputs[P_first] = results.first;
A_top = A;
}
else {
// Recurse on two intervals: [P_first, P_mid] and [P_mid+1, P_last]
const size_t P_mid = (P_first + P_last) / 2;
split_t A_split =
partitioner_.split (A, P_first, P_mid, P_last,
contiguous_cache_blocks);
A_top = factor_helper (P_first, P_mid, depth+1, A_split.first,
seq_outputs, par_outputs, R, ldr,
contiguous_cache_blocks);
mat_view A_bot =
factor_helper (P_mid+1, P_last, depth+1, A_split.second,
seq_outputs, par_outputs, R, ldr,
contiguous_cache_blocks);
// Combine the two results
factor_pair (P_first, P_mid+1, A_top, A_bot, par_outputs,
contiguous_cache_blocks);
}
// If we're completely done, extract the final R factor from
// the topmost partition.
if (depth == 0) {
#ifdef TBB_DEBUG
cerr << "factor_helper: On P_first = " << P_first
<< ", extracting R:" << endl
<< "A_top is " << A_top.nrows() << " x " << A_top.ncols()
<< " with leading dimension " << A_top.lda();
#endif // TBB_DEBUG
seq_.extract_R (A_top.nrows(), A_top.ncols(), A_top.get(),
A_top.lda(), R, ldr, contiguous_cache_blocks);
}
return A_top;
}
template< class LocalOrdinal, class Scalar >
bool
TbbRecursiveTsqr< LocalOrdinal, Scalar >::
apply_helper_empty (const size_t P_first,
const size_t P_last,
const_mat_view& Q,
mat_view& C) const
{
if (Q.empty ()) {
if (! C.empty())
throw std::logic_error("Q is empty but C is not!");
else
return true;
}
else if (C.empty()) {
if (! Q.empty())
throw std::logic_error("C is empty but Q is not!");
else
return true;
}
else if (P_first > P_last)
return true;
else
return false;
}
template< class LocalOrdinal, class Scalar >
void
TbbRecursiveTsqr< LocalOrdinal, Scalar >::
build_partition_array (const size_t P_first,
const size_t P_last,
typename TbbRecursiveTsqr< LocalOrdinal, Scalar >::array_top_blocks_t& top_blocks,
const_mat_view& Q,
mat_view& C,
const bool contiguous_cache_blocks) const
{
#ifdef TBB_DEBUG
cerr << "build_partition_array: [" << P_first << ", " << P_last << "]:" << endl
<< "Q is " << Q.nrows() << " x " << Q.ncols() << " w/ LDA = "
<< Q.lda() << endl << "C is " << C.nrows() << " x " << C.ncols()
<< " w/ LDA = " << C.lda() << endl;
#endif // TBB_DEBUG
if (P_first > P_last)
return;
else if (P_first == P_last)
{
CacheBlocker< LocalOrdinal, Scalar > blocker (Q.nrows(), Q.ncols(), seq_.cache_blocking_strategy());
const_mat_view Q_top = blocker.top_block (Q, contiguous_cache_blocks);
mat_view C_top = blocker.top_block (C, contiguous_cache_blocks);
top_blocks[P_first] =
std::make_pair (const_mat_view (Q_top.ncols(), Q_top.ncols(), Q_top.get(), Q_top.lda()),
mat_view (C_top.ncols(), C_top.ncols(), C_top.get(), C_top.lda()));
}
else
{
// Recurse on two intervals: [P_first, P_mid] and [P_mid+1, P_last]
const size_t P_mid = (P_first + P_last) / 2;
const_split_t Q_split =
partitioner_.split (Q, P_first, P_mid, P_last,
contiguous_cache_blocks);
split_t C_split =
partitioner_.split (C, P_first, P_mid, P_last,
contiguous_cache_blocks);
build_partition_array (P_first, P_mid, top_blocks, Q_split.first,
C_split.first, contiguous_cache_blocks);
build_partition_array (P_mid+1, P_last, top_blocks, Q_split.second,
C_split.second, contiguous_cache_blocks);
}
}
template< class LocalOrdinal, class Scalar >
void
TbbRecursiveTsqr< LocalOrdinal, Scalar >::
apply_helper (const size_t P_first,
const size_t P_last,
const_mat_view Q,
mat_view C,
typename TbbRecursiveTsqr< LocalOrdinal, Scalar >::array_top_blocks_t& top_blocks,
const FactorOutput& factor_output,
const bool contiguous_cache_blocks) const
{
typedef std::pair< const_mat_view, mat_view > apply_t;
#ifdef TBB_DEBUG
cerr << "apply_helper: [" << P_first << ", " << P_last << "]:" << endl
<< "Q is " << Q.nrows() << " x " << Q.ncols() << " w/ LDA = "
<< Q.lda() << endl << "C is " << C.nrows() << " x " << C.ncols()
<< " w/ LDA = " << C.lda() << endl;
#endif // TBB_DEBUG
if (apply_helper_empty (P_first, P_last, Q, C))
return;
else if (P_first == P_last)
{
const std::vector< SeqOutput >& seq_outputs = factor_output.first;
seq_.apply ("N", Q.nrows(), Q.ncols(), Q.get(), Q.lda(),
seq_outputs[P_first], C.ncols(), C.get(),
C.lda(), contiguous_cache_blocks);
#ifdef TBB_DEBUG
cerr << "BOO!!!" << endl;
#endif // TBB_DEBUG
}
else
{
// Recurse on two intervals: [P_first, P_mid] and [P_mid+1, P_last]
const size_t P_mid = (P_first + P_last) / 2;
const_split_t Q_split =
partitioner_.split (Q, P_first, P_mid, P_last,
contiguous_cache_blocks);
split_t C_split =
partitioner_.split (C, P_first, P_mid, P_last,
contiguous_cache_blocks);
const ParOutput& par_output = factor_output.second;
apply_pair ("N", P_first, P_mid+1, top_blocks[P_mid+1].first,
par_output, top_blocks[P_first].second,
top_blocks[P_mid+1].second, contiguous_cache_blocks);
apply_helper (P_first, P_mid, Q_split.first, C_split.first,
top_blocks, factor_output, contiguous_cache_blocks);
apply_helper (P_mid+1, P_last, Q_split.second, C_split.second,
top_blocks, factor_output, contiguous_cache_blocks);
}
}
template< class LocalOrdinal, class Scalar >
typename TbbRecursiveTsqr< LocalOrdinal, Scalar >::top_blocks_t
TbbRecursiveTsqr< LocalOrdinal, Scalar >::
apply_transpose_helper (const std::string& op,
const size_t P_first,
const size_t P_last,
const_mat_view Q,
mat_view C,
const typename TbbRecursiveTsqr<LocalOrdinal, Scalar>::FactorOutput& factor_output,
const bool contiguous_cache_blocks) const
{
if (apply_helper_empty (P_first, P_last, Q, C)) {
return std::make_pair (Q, C);
}
else if (P_first == P_last) {
const std::vector<SeqOutput>& seq_outputs = factor_output.first;
seq_.apply (op, Q.nrows(), Q.ncols(), Q.get(), Q.lda(),
seq_outputs[P_first], C.ncols(), C.get(),
C.lda(), contiguous_cache_blocks);
return std::make_pair (Q, C);
}
else {
// Recurse on two intervals: [P_first, P_mid] and [P_mid+1, P_last]
const size_t P_mid = (P_first + P_last) / 2;
const_split_t Q_split =
partitioner_.split (Q, P_first, P_mid, P_last,
contiguous_cache_blocks);
split_t C_split =
partitioner_.split (C, P_first, P_mid, P_last,
contiguous_cache_blocks);
const ParOutput& par_output = factor_output.second;
top_blocks_t Top =
apply_transpose_helper (op, P_first, P_mid, Q_split.first,
C_split.first, factor_output,
contiguous_cache_blocks);
top_blocks_t Bottom =
apply_transpose_helper (op, P_mid+1, P_last, Q_split.second,
C_split.second, factor_output,
contiguous_cache_blocks);
apply_pair (op, P_first, P_mid+1, Bottom.first,
par_output, Top.second, Bottom.second,
contiguous_cache_blocks);
return Top;
}
}
template< class LocalOrdinal, class Scalar >
void
TbbRecursiveTsqr< LocalOrdinal, Scalar >::
factor_pair (const size_t P_top,
const size_t P_bot,
mat_view& A_top,
mat_view& A_bot,
std::vector< std::vector< Scalar > >& par_outputs,
const bool contiguous_cache_blocks) const
{
if (P_top == P_bot)
{
throw std::logic_error("factor_pair: should never get here!");
return; // to pacify the compiler
}
// We only read and write the upper ncols x ncols triangle of
// each block.
const LocalOrdinal ncols = A_top.ncols();
if (A_bot.ncols() != ncols)
throw std::logic_error("A_bot.ncols() != A_top.ncols()");
std::vector< Scalar >& tau = par_outputs[P_bot];
std::vector< Scalar > work (ncols);
TSQR::Combine< LocalOrdinal, Scalar > combine_;
combine_.factor_pair (ncols, A_top.get(), A_top.lda(),
A_bot.get(), A_bot.lda(), &tau[0], &work[0]);
}
template< class LocalOrdinal, class Scalar >
void
TbbRecursiveTsqr< LocalOrdinal, Scalar >::
apply_pair (const std::string& trans,
const size_t P_top,
const size_t P_bot,
const_mat_view& Q_bot,
const std::vector<std::vector<Scalar> >& tau_arrays,
mat_view& C_top,
mat_view& C_bot,
const bool contiguous_cache_blocks) const
{
if (P_top == P_bot) {
throw std::logic_error ("apply_pair: should never get here!");
}
const std::vector<Scalar>& tau = tau_arrays[P_bot];
std::vector<Scalar> work (C_top.ncols());
TSQR::Combine<LocalOrdinal, Scalar> combine_;
combine_.apply_pair (trans.c_str(), C_top.ncols(), Q_bot.ncols(),
Q_bot.get(), Q_bot.lda(), &tau[0],
C_top.get(), C_top.lda(),
C_bot.get(), C_bot.lda(), &work[0]);
}
template< class LocalOrdinal, class Scalar >
void
TbbRecursiveTsqr< LocalOrdinal, Scalar >::
cache_block_helper (mat_view& A_out,
const_mat_view& A_in,
const size_t P_first,
const size_t P_last) const
{
if (P_first > P_last)
return;
else if (P_first == P_last)
seq_.cache_block (A_out.nrows(), A_out.ncols(), A_out.get(),
A_in.get(), A_in.lda());
else
{
const size_t P_mid = (P_first + P_last) / 2;
const_split_t A_in_split =
partitioner_.split (A_in, P_first, P_mid, P_last, false);
split_t A_out_split =
partitioner_.split (A_out, P_first, P_mid, P_last, true);
cache_block_helper (A_out_split.first, A_in_split.first,
P_first, P_mid);
cache_block_helper (A_out_split.second, A_in_split.second,
P_mid+1, P_last);
}
}
template< class LocalOrdinal, class Scalar >
void
TbbRecursiveTsqr< LocalOrdinal, Scalar >::
un_cache_block_helper (mat_view& A_out,
const const_mat_view& A_in,
const size_t P_first,
const size_t P_last) const
{
if (P_first > P_last) {
return;
}
else if (P_first == P_last) {
seq_.un_cache_block (A_out.nrows(), A_out.ncols(), A_out.get(),
A_out.lda(), A_in.get());
}
else {
const size_t P_mid = (P_first + P_last) / 2;
const const_split_t A_in_split =
partitioner_.split (A_in, P_first, P_mid, P_last, true);
split_t A_out_split =
partitioner_.split (A_out, P_first, P_mid, P_last, false);
un_cache_block_helper (A_out_split.first, A_in_split.first,
P_first, P_mid);
un_cache_block_helper (A_out_split.second, A_in_split.second,
P_mid+1, P_last);
}
}
template< class LocalOrdinal, class Scalar >
TbbRecursiveTsqr< LocalOrdinal, Scalar >::
TbbRecursiveTsqr (const size_t num_cores,
const size_t cache_size_hint)
: seq_ (cache_size_hint), ncores_ (1)
{
if (num_cores < 1)
ncores_ = 1; // default is no parallelism
else
ncores_ = num_cores;
}
template< class LocalOrdinal, class Scalar >
void
TbbRecursiveTsqr< LocalOrdinal, Scalar >::
cache_block (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar A_out[],
const Scalar A_in[],
const LocalOrdinal lda_in) const
{
const_mat_view A_in_view (nrows, ncols, A_in, lda_in);
// Leading dimension doesn't matter, since we're going to cache block it.
mat_view A_out_view (nrows, ncols, A_out, lda_in);
cache_block_helper (A_out_view, A_in_view, 0, ncores()-1);
}
template< class LocalOrdinal, class Scalar >
void
TbbRecursiveTsqr< LocalOrdinal, Scalar >::
un_cache_block (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar A_out[],
const LocalOrdinal lda_out,
const Scalar A_in[]) const
{
// Leading dimension doesn't matter, since it's cache-blocked.
const_mat_view A_in_view (nrows, ncols, A_in, lda_out);
mat_view A_out_view (nrows, ncols, A_out, lda_out);
un_cache_block_helper (A_out_view, A_in_view, 0, ncores()-1);
}
template< class LocalOrdinal, class Scalar >
typename TbbRecursiveTsqr< LocalOrdinal, Scalar >::FactorOutput
TbbRecursiveTsqr< LocalOrdinal, Scalar >::
factor (const LocalOrdinal nrows,
const LocalOrdinal ncols,
Scalar A[],
const LocalOrdinal lda,
Scalar R[],
const LocalOrdinal ldr,
const bool contiguous_cache_blocks) const
{
mat_view A_view (nrows, ncols, A, lda);
std::vector< SeqOutput > seq_outputs (ncores());
ParOutput par_outputs (ncores(), std::vector< Scalar >(ncols));
(void) factor_helper (0, ncores()-1, 0, A_view, seq_outputs,
par_outputs, R, ldr, contiguous_cache_blocks);
return std::make_pair (seq_outputs, par_outputs);
}
template< class LocalOrdinal, class Scalar >
void
TbbRecursiveTsqr< LocalOrdinal, Scalar >::
apply (const std::string& op,
const LocalOrdinal nrows,
const LocalOrdinal ncols_C,
Scalar C[],
const LocalOrdinal ldc,
const LocalOrdinal ncols_Q,
const Scalar Q[],
const LocalOrdinal ldq,
const typename TbbRecursiveTsqr< LocalOrdinal, Scalar >::FactorOutput& factor_output,
const bool contiguous_cache_blocks) const
{
const ApplyType apply_type (op);
if (apply_type == ApplyType::ConjugateTranspose &&
Teuchos::ScalarTraits<Scalar>::isComplex)
throw std::logic_error("Applying Q^H for complex scalar types "
"not yet implemented");
const_mat_view Q_view (nrows, ncols_Q, Q, ldq);
mat_view C_view (nrows, ncols_C, C, ldc);
if (! apply_type.transposed ()) {
array_top_blocks_t top_blocks (ncores ());
build_partition_array (0, ncores () - 1, top_blocks, Q_view,
C_view, contiguous_cache_blocks);
apply_helper (0, ncores () - 1, Q_view, C_view, top_blocks,
factor_output, contiguous_cache_blocks);
}
else {
apply_transpose_helper (op, 0, ncores () - 1, Q_view, C_view,
factor_output, contiguous_cache_blocks);
}
}
template< class LocalOrdinal, class Scalar >
void
TbbRecursiveTsqr< LocalOrdinal, Scalar >::
explicit_Q (const LocalOrdinal nrows,
const LocalOrdinal ncols_Q_in,
const Scalar Q_in[],
const LocalOrdinal ldq_in,
const LocalOrdinal ncols_Q_out,
Scalar Q_out[],
const LocalOrdinal ldq_out,
const typename TbbRecursiveTsqr< LocalOrdinal, Scalar >::FactorOutput& factor_output,
const bool contiguous_cache_blocks) const
{
if (ncols_Q_out != ncols_Q_in)
throw std::logic_error("FIXME Currently, explicit_Q() only works for ncols_Q_out == ncols_Q_in");
const_mat_view Q_in_view (nrows, ncols_Q_in, Q_in, ldq_in);
mat_view Q_out_view (nrows, ncols_Q_out, Q_out, ldq_out);
explicit_Q_helper (0, ncores()-1, Q_out_view, contiguous_cache_blocks);
apply ("N", nrows, ncols_Q_out, Q_out, ldq_out, ncols_Q_in,
Q_in, ldq_in, factor_output, contiguous_cache_blocks);
}
} // namespace TBB
} // namespace TSQR
#endif // __TSQR_TBB_TbbRecursiveTsqr_Def_hpp
|