/usr/include/trilinos/Tpetra_CrsMatrixMultiplyOp.hpp is in libtrilinos-tpetra-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 | // @HEADER
// ***********************************************************************
//
// Tpetra: Templated Linear Algebra Services Package
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
// @HEADER
#ifndef TPETRA_CRSMATRIXMULTIPLYOP_HPP
#define TPETRA_CRSMATRIXMULTIPLYOP_HPP
/// \file Tpetra_CrsMatrixMultiplyOp.hpp
///
/// Declaration and definition of Tpetra::CrsMatrixMultiplyOp and its
/// nonmember constructor Tpetra::createCrsMatrixMultiplyOp.
#include <Tpetra_CrsMatrix.hpp>
#include <Tpetra_Util.hpp>
#include <Teuchos_TimeMonitor.hpp>
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
# include "Teuchos_VerboseObject.hpp"
#endif
namespace Tpetra {
/// \brief A class for wrapping a CrsMatrix multiply in a Operator.
///
/// \note Most Tpetra users do not need to use this class. It will
/// be useful to Tpetra users who want to do mixed-precision
/// sparse matrix-vector multiply, where the sparse matrix's
/// entries have a different precision than that of the input and
/// output vectors. If your sparse matrix and vectors have the
/// same type of entries, then you don't need to use this class.
///
/// This class makes a <tt>CrsMatrix<MatScalar, ...></tt> "look
/// like" an <tt>Operator<Scalar, ...></tt>, where
/// <tt>MatScalar</tt> and <tt>Scalar</tt> may be different types.
/// It does so by working around a limitation of C++, namely that
/// template methods of a class can't be virtual.
///
/// Here is a detailed description of how the language issue relates
/// to CrsMatrix. If you call the <tt>apply</tt> method of
/// CrsMatrix, you will always get the version that takes a
/// <tt>MultiVector<Scalar, ...></tt> input and produces a
/// <tt>MultiVector<Scalar, ...></tt> output. CrsMatrix actually
/// implements a a templated sparse matrix-vector multiply operation
/// (its <tt>localMultiply</tt> method). It is templated on the
/// scalar types of its input and output multivectors
/// (<tt>DomainScalar</tt> resp. <tt>RangeScalar</tt>). However,
/// Operator can't access this templated mat-vec method. This is
/// because Operator::apply is virtual, and therefore cannot have a
/// template parameter for the <tt>Scalar</tt> type of the
/// MultiVector input and output.
///
/// Users who want to access the templated sparse mat-vec in
/// CrsMatrix through the Operator interface may wrap the CrsMatrix
/// in an instance of this class. This class implements an Operator
/// that takes <tt>MultiVector<Scalar, ...></tt> input and output,
/// but the CrsMatrix may contain any desired type
/// <tt>MatScalar</tt>. The type <tt>MatScalar</tt> may differ from
/// the <tt>Scalar</tt> type of the MultiVector input and output.
/// That works around the "no virtual template methods" issue for
/// input and output multivectors of the same type.
///
/// Interestingly enough, CrsMatrix implements its <tt>apply</tt>
/// method using an instance of this class with <tt>Scalar ==
/// MatScalar</tt>. CrsMatrix does not actually contain an
/// implementation of "nonlocal" (distributed over multiple MPI
/// processes) mat-vec; its <tt>apply</tt> defers the nonlocal part
/// to this class' apply() method. The same is true for the
/// gaussSeidel() method.
///
/// \tparam Scalar The type of the entries of the input and output
/// MultiVector of the apply() method. Same as the first template
/// parameter of Operator.
///
/// \tparam MatScalar The type of the entries of the CrsMatrix; the
/// first template parameter of CrsMatrix.
///
/// \tparam LocalOrdinal The type of the local indices of the
/// CrsMatrix; the second template parameter of CrsMatrix and
/// Operator.
///
/// \tparam GlobalOrdinal The type of the global indices of the
/// CrsMatrix; the third template parameter of CrsMatrix and
/// Operator.
///
/// \tparam Node The fourth template parameter of CrsMatrix and
/// Operator.
template <class Scalar,
class MatScalar = Scalar,
class LocalOrdinal = ::Tpetra::Details::DefaultTypes::local_ordinal_type,
class GlobalOrdinal = ::Tpetra::Details::DefaultTypes::global_ordinal_type,
class Node = ::Tpetra::Details::DefaultTypes::node_type>
class CrsMatrixMultiplyOp :
public Operator<Scalar, LocalOrdinal, GlobalOrdinal, Node>
{
public:
//! The specialization of CrsMatrix which this class wraps.
typedef CrsMatrix<MatScalar, LocalOrdinal, GlobalOrdinal, Node> crs_matrix_type;
//! The specialization of Map which this class uses.
typedef Map<LocalOrdinal, GlobalOrdinal, Node> map_type;
//! @name Constructor and destructor
//@{
/// \brief Constructor
///
/// \param A [in] The CrsMatrix to wrap as an
/// <tt>Operator<Scalar, ...></tt>.
CrsMatrixMultiplyOp (const Teuchos::RCP<const crs_matrix_type>& A) :
matrix_ (A)
{
// we don't require that A is fill complete; we will query for the
// importer/exporter at apply()-time
#ifdef HAVE_KOKKOSCLASSIC_CUDA_NODE_MEMORY_PROFILING
importTimer_ = Teuchos::TimeMonitor::getNewCounter ("CrsMatrixMultiplyOp::import");
exportTimer_ = Teuchos::TimeMonitor::getNewCounter ("CrsMatrixMultiplyOp::export");
#endif
}
//! Destructor (virtual for memory safety of derived classes).
virtual ~CrsMatrixMultiplyOp () {}
//@}
//! @name Methods implementing Operator
//@{
/// \brief Compute <tt>Y = beta*Y + alpha*Op(A)*X</tt>, where
/// <tt>Op(A)</tt> is either A, \f$A^T\f$, or \f$A^H\f$.
///
/// This method calls the underlying CrsMatrix object's
/// localMultiply<Scalar,Scalar>() method.
void
apply (const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X,
MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Y,
Teuchos::ETransp mode = Teuchos::NO_TRANS,
Scalar alpha = Teuchos::ScalarTraits<Scalar>::one (),
Scalar beta = Teuchos::ScalarTraits<Scalar>::zero ()) const
{
TEUCHOS_TEST_FOR_EXCEPTION
(! matrix_->isFillComplete (), std::runtime_error,
Teuchos::typeName (*this) << "::apply(): underlying matrix is not fill-complete.");
TEUCHOS_TEST_FOR_EXCEPTION
(X.getNumVectors () != Y.getNumVectors (), std::runtime_error,
Teuchos::typeName (*this) << "::apply(X,Y): X and Y must have the same number of vectors.");
TEUCHOS_TEST_FOR_EXCEPTION
(Teuchos::ScalarTraits<Scalar>::isComplex && mode == Teuchos::TRANS, std::logic_error,
Teuchos::typeName (*this) << "::apply() does not currently support transposed multiplications for complex scalar types.");
if (mode == Teuchos::NO_TRANS) {
applyNonTranspose (X, Y, alpha, beta);
}
else {
applyTranspose (X, Y, mode, alpha, beta);
}
}
/// \brief "Hybrid" Jacobi + (Gauss-Seidel or SOR) on \f$B = A X\f$.
///
/// "Hybrid" means Jacobi for interprocess communication, but
/// Successive Over-Relaxation (SOR) or Gauss-Seidel for
/// intraprocess computation. Gauss-Seidel is a special case of
/// SOR, where the damping factor is one.
///
/// The Forward or Backward sweep directions have their usual SOR
/// meaning within the process. Interprocess communication occurs
/// once before the sweep, as it would in Jacobi.
///
/// The Symmetric sweep direction means first Forward, then
/// Backward. Before each sweep is an interprocess communication,
/// as in Jacobi. Thus, Symmetric results in two interprocess
/// communication steps.
///
/// \param B [in] Right-hand side(s), in the range Map of the
/// matrix.
/// \param X [in/out] On input: initial guess(es). On output:
/// result multivector(s). This must be a domain Map view of
/// a column Map multivector.
/// \param D [in] Inverse of diagonal entries of the matrix A,
/// in the row Map of the matrix.
/// \param dampingFactor [in] SOR damping factor. A damping
/// factor of one results in Gauss-Seidel.
/// \param direction [in] Sweep direction: Forward, Backward, or
/// Symmetric.
/// \param numSweeps [in] Number of sweeps. We count each
/// Symmetric sweep (including both its Forward and its Backward
/// sweep) as one.
///
/// \pre Domain, range, and row Maps of the sparse matrix are all
/// the same. (The domain and range Maps must be the same
/// because this kernel overwrites its input. The row Map must
/// be the same because the kernel uses the same local indices
/// for the rows of the sparse matrix, and for the rows of the
/// input / output multivector.)
///
/// \pre No other argument aliases X.
void
gaussSeidel (const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &B,
MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &X,
const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &D,
const Scalar& dampingFactor,
const ESweepDirection direction,
const int numSweeps) const
{
using Teuchos::null;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcpFromRef;
using Teuchos::rcp_const_cast;
typedef Scalar OS;
typedef Map<LocalOrdinal, GlobalOrdinal, Node> map_type;
typedef Export<LocalOrdinal, GlobalOrdinal, Node> export_type;
typedef Import<LocalOrdinal, GlobalOrdinal, Node> import_type;
typedef MultiVector<OS, LocalOrdinal, GlobalOrdinal, Node> OSMV;
TEUCHOS_TEST_FOR_EXCEPTION
(numSweeps < 0, std::invalid_argument,
"gaussSeidel: The number of sweeps must be nonnegative, "
"but you provided numSweeps = " << numSweeps << " < 0.");
// Translate from global to local sweep direction.
// While doing this, validate the input.
KokkosClassic::ESweepDirection localDirection;
if (direction == Forward) {
localDirection = KokkosClassic::Forward;
}
else if (direction == Backward) {
localDirection = KokkosClassic::Backward;
}
else if (direction == Symmetric) {
// We'll control local sweep direction manually.
localDirection = KokkosClassic::Forward;
}
else {
TEUCHOS_TEST_FOR_EXCEPTION
(true, std::invalid_argument,
"gaussSeidel: The 'direction' enum does not have any of its valid "
"values: Forward, Backward, or Symmetric.");
}
if (numSweeps == 0) {
return; // Nothing to do.
}
// We don't need the Export object because this method assumes
// that the row, domain, and range Maps are the same. We do need
// the Import object, if there is one, though.
RCP<const import_type> importer = matrix_->getGraph()->getImporter();
RCP<const export_type> exporter = matrix_->getGraph()->getExporter();
TEUCHOS_TEST_FOR_EXCEPTION
(! exporter.is_null (), std::runtime_error,
"Tpetra's gaussSeidel implementation requires that the row, domain, "
"and range Maps be the same. This cannot be the case, because the "
"matrix has a nontrivial Export object.");
RCP<const map_type> domainMap = matrix_->getDomainMap ();
RCP<const map_type> rangeMap = matrix_->getRangeMap ();
RCP<const map_type> rowMap = matrix_->getGraph ()->getRowMap ();
RCP<const map_type> colMap = matrix_->getGraph ()->getColMap ();
#ifdef HAVE_TEUCHOS_DEBUG
{
// The relation 'isSameAs' is transitive. It's also a
// collective, so we don't have to do a "shared" test for
// exception (i.e., a global reduction on the test value).
TEUCHOS_TEST_FOR_EXCEPTION
(! X.getMap ()->isSameAs (*domainMap), std::runtime_error,
"Tpetra::CrsMatrix::gaussSeidel requires that the input "
"multivector X be in the domain Map of the matrix.");
TEUCHOS_TEST_FOR_EXCEPTION
(! B.getMap ()->isSameAs (*rangeMap), std::runtime_error,
"Tpetra::CrsMatrix::gaussSeidel requires that the input "
"B be in the range Map of the matrix.");
TEUCHOS_TEST_FOR_EXCEPTION
(! D.getMap ()->isSameAs (*rowMap), std::runtime_error,
"Tpetra::CrsMatrix::gaussSeidel requires that the input "
"D be in the row Map of the matrix.");
TEUCHOS_TEST_FOR_EXCEPTION
(! rowMap->isSameAs (*rangeMap), std::runtime_error,
"Tpetra::CrsMatrix::gaussSeidel requires that the row Map and the "
"range Map be the same (in the sense of Tpetra::Map::isSameAs).");
TEUCHOS_TEST_FOR_EXCEPTION
(! domainMap->isSameAs (*rangeMap), std::runtime_error,
"Tpetra::CrsMatrix::gaussSeidel requires that the domain Map and "
"the range Map of the matrix be the same.");
}
#else
// Forestall any compiler warnings for unused variables.
(void) rangeMap;
(void) rowMap;
#endif // HAVE_TEUCHOS_DEBUG
// If B is not constant stride, copy it into a constant stride
// multivector. We'l handle the right-hand side B first and deal
// with X right before the sweeps, to improve locality of the
// first sweep. (If the problem is small enough, then that will
// hopefully keep more of the entries of X in cache. This
// optimizes for the typical case of a small number of sweeps.)
RCP<const OSMV> B_in;
if (B.isConstantStride()) {
B_in = rcpFromRef (B);
}
else {
// The range Map and row Map are the same in this case, so we
// can use the (possibly cached) row Map multivector to store a
// constant stride copy of B. We don't have to copy back, since
// Gauss-Seidel won't modify B.
RCP<OSMV> B_in_nonconst = getRowMapMultiVector (B, true);
deep_copy (*B_in_nonconst, B);
B_in = rcp_const_cast<const OSMV> (B_in_nonconst);
TPETRA_EFFICIENCY_WARNING
(! B.isConstantStride (), std::runtime_error,
"gaussSeidel: The current implementation of the Gauss-Seidel kernel "
"requires that X and B both have constant stride. Since B does not "
"have constant stride, we had to make a copy. This is a limitation of "
"the current implementation and not your fault, but we still report it "
"as an efficiency warning for your information.");
}
// If X is not constant stride, copy it into a constant stride
// multivector. Also, make the column Map multivector X_colMap,
// and its domain Map view X_domainMap. (X actually must be a
// domain Map view of a column Map multivector; exploit this, if X
// has constant stride.)
RCP<OSMV> X_domainMap;
RCP<OSMV> X_colMap;
bool copiedInput = false;
if (importer.is_null ()) { // Domain and column Maps are the same.
if (X.isConstantStride ()) {
X_domainMap = rcpFromRef (X);
X_colMap = X_domainMap;
copiedInput = false;
}
else {
// Get a temporary column Map multivector, make a domain Map
// view of it, and copy X into the domain Map view. We have
// to copy here because we won't be doing Import operations.
X_colMap = getColumnMapMultiVector (X, true);
X_domainMap = X_colMap; // Domain and column Maps are the same.
deep_copy (*X_domainMap, X); // Copy X into the domain Map view.
copiedInput = true;
TPETRA_EFFICIENCY_WARNING
(! X.isConstantStride (), std::runtime_error,
"gaussSeidel: The current implementation of the Gauss-Seidel kernel "
"requires that X and B both have constant stride. Since X does not "
"have constant stride, we had to make a copy. This is a limitation of "
"the current implementation and not your fault, but we still report it "
"as an efficiency warning for your information.");
}
}
else { // We will be doing Import operations in the sweeps.
if (X.isConstantStride ()) {
X_domainMap = rcpFromRef (X);
// This kernel assumes that X is a domain Map view of a column
// Map multivector. We will only check if this is valid if
// the CMake configure Teuchos_ENABLE_DEBUG is ON.
X_colMap = X_domainMap->offsetViewNonConst (colMap, 0);
// Do the first Import for the first sweep. This simplifies
// the logic in the sweeps.
X_colMap->doImport (X, *importer, INSERT);
copiedInput = false;
}
else {
// Get a temporary column Map multivector X_colMap, and make a
// domain Map view X_domainMap of it. Instead of copying, we
// do an Import from X into X_domainMap. This saves us a
// copy, since the Import has to copy the data anyway.
X_colMap = getColumnMapMultiVector (X, true);
X_domainMap = X_colMap->offsetViewNonConst (domainMap, 0);
X_colMap->doImport (X, *importer, INSERT);
copiedInput = true;
TPETRA_EFFICIENCY_WARNING
(! X.isConstantStride (), std::runtime_error,
"gaussSeidel: The current implementation of the Gauss-Seidel kernel "
"requires that X and B both have constant stride. Since X does not "
"have constant stride, we had to make a copy. This is a limitation of "
"the current implementation and not your fault, but we still report it "
"as an efficiency warning for your information.");
}
}
for (int sweep = 0; sweep < numSweeps; ++sweep) {
if (! importer.is_null () && sweep > 0) {
// We already did the first Import for the zeroth sweep.
X_colMap->doImport (*X_domainMap, *importer, INSERT);
}
// Do local Gauss-Seidel.
if (direction != Symmetric) {
matrix_->template localGaussSeidel<OS,OS> (*B_in, *X_colMap, D,
dampingFactor,
localDirection);
}
else { // direction == Symmetric
matrix_->template localGaussSeidel<OS,OS> (*B_in, *X_colMap, D,
dampingFactor,
KokkosClassic::Forward);
// Communicate again before the Backward sweep.
if (! importer.is_null ()) {
X_colMap->doImport (*X_domainMap, *importer, INSERT);
}
matrix_->template localGaussSeidel<OS,OS> (*B_in, *X_colMap, D,
dampingFactor,
KokkosClassic::Backward);
}
}
if (copiedInput) {
deep_copy (X, *X_domainMap); // Copy back: X_domainMap -> X.
}
}
/// \brief Version of gaussSeidel(), with fewer requirements on X.
///
/// This method is just like gaussSeidel(), except that X need
/// only be in the domain Map. This method does not require that
/// X be a domain Map view of a column Map multivector. As a
/// result, this method must copy X into a domain Map multivector
/// before operating on it.
///
/// \param X [in/out] On input: initial guess(es). On output:
/// result multivector(s).
/// \param B [in] Right-hand side(s), in the range Map.
/// \param D [in] Inverse of diagonal entries of the matrix,
/// in the row Map.
/// \param dampingFactor [in] SOR damping factor. A damping
/// factor of one results in Gauss-Seidel.
/// \param direction [in] Sweep direction: Forward, Backward, or
/// Symmetric.
/// \param numSweeps [in] Number of sweeps. We count each
/// Symmetric sweep (including both its Forward and its
/// Backward sweep) as one.
///
/// \pre Domain, range, and row Maps of the sparse matrix are
/// all the same.
/// \pre No other argument aliases X.
void
gaussSeidelCopy (MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &X,
const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &B,
const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &D,
const Scalar& dampingFactor,
const ESweepDirection direction,
const int numSweeps) const
{
using Teuchos::null;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcpFromRef;
using Teuchos::rcp_const_cast;
typedef Scalar OS;
typedef Map<LocalOrdinal, GlobalOrdinal, Node> map_type;
typedef Export<LocalOrdinal, GlobalOrdinal, Node> export_type;
typedef Import<LocalOrdinal, GlobalOrdinal, Node> import_type;
typedef MultiVector<OS, LocalOrdinal, GlobalOrdinal, Node> OSMV;
TEUCHOS_TEST_FOR_EXCEPTION
(numSweeps < 0, std::invalid_argument,
"gaussSeidelCopy: The number of sweeps must be nonnegative, "
"but you provided numSweeps = " << numSweeps << " < 0.");
// Translate from global to local sweep direction.
// While doing this, validate the input.
KokkosClassic::ESweepDirection localDirection;
if (direction == Forward) {
localDirection = KokkosClassic::Forward;
}
else if (direction == Backward) {
localDirection = KokkosClassic::Backward;
}
else if (direction == Symmetric) {
// We'll control local sweep direction manually.
localDirection = KokkosClassic::Forward;
}
else {
TEUCHOS_TEST_FOR_EXCEPTION
(true, std::invalid_argument,
"gaussSeidelCopy: The 'direction' enum does not have any of its "
"valid values: Forward, Backward, or Symmetric.");
}
if (numSweeps == 0) {
return;
}
RCP<const import_type> importer = matrix_->getGraph()->getImporter();
RCP<const export_type> exporter = matrix_->getGraph()->getExporter();
TEUCHOS_TEST_FOR_EXCEPTION
(! exporter.is_null (),
std::runtime_error,
"Tpetra's gaussSeidelCopy implementation requires that the row, domain, "
"and range Maps be the same. This cannot be the case, because the "
"matrix has a nontrivial Export object.");
RCP<const map_type> domainMap = matrix_->getDomainMap ();
RCP<const map_type> rangeMap = matrix_->getRangeMap ();
RCP<const map_type> rowMap = matrix_->getGraph ()->getRowMap ();
RCP<const map_type> colMap = matrix_->getGraph ()->getColMap ();
#ifdef HAVE_TEUCHOS_DEBUG
{
// The relation 'isSameAs' is transitive. It's also a
// collective, so we don't have to do a "shared" test for
// exception (i.e., a global reduction on the test value).
TEUCHOS_TEST_FOR_EXCEPTION
(! X.getMap ()->isSameAs (*domainMap), std::runtime_error,
"Tpetra::CrsMatrix::gaussSeidelCopy requires that the input "
"multivector X be in the domain Map of the matrix.");
TEUCHOS_TEST_FOR_EXCEPTION
(! B.getMap ()->isSameAs (*rangeMap), std::runtime_error,
"Tpetra::CrsMatrix::gaussSeidelCopy requires that the input "
"B be in the range Map of the matrix.");
TEUCHOS_TEST_FOR_EXCEPTION
(! D.getMap ()->isSameAs (*rowMap), std::runtime_error,
"Tpetra::CrsMatrix::gaussSeidelCopy requires that the input "
"D be in the row Map of the matrix.");
TEUCHOS_TEST_FOR_EXCEPTION
(! rowMap->isSameAs (*rangeMap), std::runtime_error,
"Tpetra::CrsMatrix::gaussSeidelCopy requires that the row Map and the "
"range Map be the same (in the sense of Tpetra::Map::isSameAs).");
TEUCHOS_TEST_FOR_EXCEPTION
(! domainMap->isSameAs (*rangeMap), std::runtime_error,
"Tpetra::CrsMatrix::gaussSeidelCopy requires that the domain Map and "
"the range Map of the matrix be the same.");
}
#else
// Forestall any compiler warnings for unused variables.
(void) rangeMap;
(void) rowMap;
#endif // HAVE_TEUCHOS_DEBUG
// Fetch a (possibly cached) temporary column Map multivector
// X_colMap, and a domain Map view X_domainMap of it. Both have
// constant stride by construction. We know that the domain Map
// must include the column Map, because our Gauss-Seidel kernel
// requires that the row Map, domain Map, and range Map are all
// the same, and that each process owns all of its own diagonal
// entries of the matrix.
RCP<OSMV> X_colMap;
RCP<OSMV> X_domainMap;
bool copyBackOutput = false;
if (importer.is_null ()) {
if (X.isConstantStride ()) {
X_colMap = rcpFromRef (X);
X_domainMap = rcpFromRef (X);
// No need to copy back to X at end.
}
else { // We must copy X into a constant stride multivector.
// Just use the cached column Map multivector for that.
X_colMap = getColumnMapMultiVector (X, true);
// X_domainMap is always a domain Map view of the column Map
// multivector. In this case, the domain and column Maps are
// the same, so X_domainMap _is_ X_colMap.
X_domainMap = X_colMap;
deep_copy (*X_domainMap, X); // Copy X into constant stride multivector
copyBackOutput = true; // Don't forget to copy back at end.
TPETRA_EFFICIENCY_WARNING
(! X.isConstantStride (), std::runtime_error,
"gaussSeidelCopy: The current implementation of the Gauss-Seidel "
"kernel requires that X and B both have constant stride. Since X "
"does not have constant stride, we had to make a copy. This is a "
"limitation of the current implementation and not your fault, but we "
"still report it as an efficiency warning for your information.");
}
}
else { // Column Map and domain Map are _not_ the same.
X_colMap = getColumnMapMultiVector (X);
X_domainMap = X_colMap->offsetViewNonConst (domainMap, 0);
// We could just copy X into X_domainMap. However, that wastes
// a copy, because the Import also does a copy (plus
// communication). Since the typical use case for Gauss-Seidel
// is a small number of sweeps (2 is typical), we don't want to
// waste that copy. Thus, we do the Import here, and skip the
// first Import in the first sweep. Importing directly from X
// effects the copy into X_domainMap (which is a view of
// X_colMap).
X_colMap->doImport (X, *importer, INSERT);
copyBackOutput = true; // Don't forget to copy back at end.
}
// The Gauss-Seidel / SOR kernel expects multivectors of constant
// stride. X_colMap is by construction, but B might not be. If
// it's not, we have to make a copy.
RCP<const OSMV> B_in;
if (B.isConstantStride ()) {
B_in = rcpFromRef (B);
}
else {
// Range Map and row Map are the same in this case, so we can
// use the cached row Map multivector to store a constant stride
// copy of B.
RCP<OSMV> B_in_nonconst = getRowMapMultiVector (B, true);
*B_in_nonconst = B;
B_in = rcp_const_cast<const OSMV> (B_in_nonconst);
TPETRA_EFFICIENCY_WARNING
(! B.isConstantStride (), std::runtime_error,
"gaussSeidelCopy: The current implementation requires that B have "
"constant stride. Since B does not have constant stride, we had to "
"copy it into a separate constant-stride multivector. This is a "
"limitation of the current implementation and not your fault, but we "
"still report it as an efficiency warning for your information.");
}
for (int sweep = 0; sweep < numSweeps; ++sweep) {
if (! importer.is_null () && sweep > 0) {
// We already did the first Import for the zeroth sweep above.
X_colMap->doImport (*X_domainMap, *importer, INSERT);
}
// Do local Gauss-Seidel.
if (direction != Symmetric) {
matrix_->template localGaussSeidel<OS,OS> (*B_in, *X_colMap, D,
dampingFactor,
localDirection);
}
else { // direction == Symmetric
matrix_->template localGaussSeidel<OS,OS> (*B_in, *X_colMap, D,
dampingFactor,
KokkosClassic::Forward);
// Communicate again before the Backward sweep, if necessary.
if (! importer.is_null ()) {
X_colMap->doImport (*X_domainMap, *importer, INSERT);
}
matrix_->template localGaussSeidel<OS,OS> (*B_in, *X_colMap, D,
dampingFactor,
KokkosClassic::Backward);
}
}
if (copyBackOutput) {
deep_copy (X, *X_domainMap); // Copy result back into X.
}
}
/// \brief Whether this Operator's apply() method can apply the
/// transpose or conjugate transpose.
///
/// This is always true, since it is true for the CrsMatrix that
/// this object wraps.
bool hasTransposeApply() const {
return true;
}
//! The domain Map of this Operator.
Teuchos::RCP<const map_type> getDomainMap () const {
return matrix_->getDomainMap ();
}
//! The range Map of this Operator.
Teuchos::RCP<const map_type> getRangeMap () const {
return matrix_->getRangeMap ();
}
//@}
protected:
typedef MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> MV;
//! The underlying CrsMatrix object.
const Teuchos::RCP<const crs_matrix_type> matrix_;
/// \brief Column Map MultiVector used in apply().
///
/// This is a column Map MultiVector. It is used as the target of
/// the forward mode Import operation (if necessary) in
/// applyNonTranspose(), and the source of the reverse mode Export
/// operation (if necessary) in applyTranspose(). Both of these
/// methods create this MultiVector on demand if needed, and reuse
/// it (if possible) for subsequent calls.
///
/// This is declared <tt>mutable</tt> because the apply() method
/// is const, yet the method needs to cache the MultiVector for
/// later use.
mutable Teuchos::RCP<MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> > importMV_;
/// \brief Row Map MultiVector used in apply().
///
/// This is a row Map MultiVector. It is uses as the source of
/// the forward mode Export operation (if necessary) in
/// applyNonTranspose(), and the target of the reverse mode Import
/// operation (if necessary) in applyTranspose(). Both of these
/// methods create this MultiVector on demand if needed, and reuse
/// it (if possible) for subsequent calls.
///
/// This is declared <tt>mutable</tt> because the apply() method
/// is const, yet the method needs to cache the MultiVector for
/// later use.
mutable Teuchos::RCP<MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> > exportMV_;
#ifdef HAVE_KOKKOSCLASSIC_CUDA_NODE_MEMORY_PROFILING
Teuchos::RCP<Teuchos::Time> importTimer_, exportTimer_;
#endif
/// \brief Apply the transpose or conjugate transpose of the
/// matrix to X_in, producing Y_in.
void
applyTranspose (const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X_in,
MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node> &Y_in,
Teuchos::ETransp mode,
Scalar alpha,
Scalar beta) const
{
typedef Teuchos::ScalarTraits<Scalar> ST;
using Teuchos::null;
int myImageID = Teuchos::rank(*matrix_->getComm());
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
Teuchos::RCP<Teuchos::FancyOStream> out = Teuchos::VerboseObjectBase::getDefaultOStream();
if (myImageID == 0) {
*out << "Entering CrsMatrixMultiplyOp::applyTranspose()" << std::endl
<< "Column Map: " << std::endl;
}
*out << matrix_->getColMap() << std::endl;
if (myImageID == 0) {
*out << "Initial input: " << std::endl;
}
X_in.describe(*out,Teuchos::VERB_EXTREME);
#endif
const size_t numVectors = X_in.getNumVectors();
// because of Views, it is difficult to determine if X and Y point to the same data.
// however, if they reference the exact same object, we will do the user the favor of copying X into new storage (with a warning)
// we ony need to do this if we have trivial importers; otherwise, we don't actually apply the operator from X into Y
Teuchos::RCP<const Import<LocalOrdinal,GlobalOrdinal,Node> > importer = matrix_->getGraph()->getImporter();
Teuchos::RCP<const Export<LocalOrdinal,GlobalOrdinal,Node> > exporter = matrix_->getGraph()->getExporter();
// access X indirectly, in case we need to create temporary storage
Teuchos::RCP<const MV> X;
// some parameters for below
const bool Y_is_replicated = !Y_in.isDistributed(),
Y_is_overwritten = (beta == ST::zero());
if (Y_is_replicated && myImageID > 0) {
beta = ST::zero();
}
// currently, cannot multiply from multivector of non-constant stride
if (X_in.isConstantStride() == false && importer==null) {
// generate a strided copy of X_in
X = Teuchos::rcp(new MV(X_in));
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
if (myImageID == 0) *out << "X is not constant stride, duplicating X results in a strided copy" << std::endl;
X->describe(*out,Teuchos::VERB_EXTREME);
#endif
}
else {
// just temporary, so this non-owning RCP is okay
X = Teuchos::rcp(&X_in, false);
}
// set up import/export temporary multivectors
if (importer != null) {
if (importMV_ != null && importMV_->getNumVectors() != numVectors) importMV_ = null;
if (importMV_ == null) {
importMV_ = Teuchos::rcp( new MV(matrix_->getColMap(),numVectors) );
}
}
if (exporter != null) {
if (exportMV_ != null && exportMV_->getNumVectors() != numVectors) exportMV_ = null;
if (exportMV_ == null) {
exportMV_ = Teuchos::rcp( new MV(matrix_->getRowMap(),numVectors) );
}
}
// If we have a non-trivial exporter, we must import elements that are permuted or are on other processors
if (exporter != null) {
{
#ifdef HAVE_KOKKOSCLASSIC_CUDA_NODE_MEMORY_PROFILING
Teuchos::TimeMonitor lcltimer(*importTimer_);
#endif
exportMV_->doImport(X_in,*exporter,INSERT);
}
// multiply out of exportMV_
X = exportMV_;
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
if (myImageID == 0) {
*out << "Performed import of X using exporter..." << std::endl;
}
X->describe(*out,Teuchos::VERB_EXTREME);
#endif
}
// If we have a non-trivial importer, we must export elements that are permuted or belong to other processors
// We will compute solution into the to-be-exported MV; get a view
if (importer != null) {
// Do actual computation
matrix_->template localMultiply<Scalar, Scalar>(*X, *importMV_, mode, alpha, ST::zero());
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
if (myImageID == 0) *out << "Import vector after localMultiply()..." << std::endl;
importMV_->describe(*out,Teuchos::VERB_EXTREME);
#endif
if (Y_is_overwritten) Y_in.putScalar(ST::zero());
else Y_in.scale(beta);
//
{
#ifdef HAVE_KOKKOSCLASSIC_CUDA_NODE_MEMORY_PROFILING
Teuchos::TimeMonitor lcltimer(*importTimer_);
#endif
Y_in.doExport(*importMV_,*importer,ADD);
}
}
// otherwise, multiply into Y
else {
// can't multiply in-situ; can't multiply into non-strided multivector
if (Y_in.isConstantStride() == false || X.getRawPtr() == &Y_in) {
// generate a strided copy of Y
MV Y(Y_in);
matrix_->template localMultiply<Scalar, Scalar>(*X, Y, mode, alpha, beta);
deep_copy (Y_in, Y);
}
else {
matrix_->template localMultiply<Scalar, Scalar>(*X, Y_in, mode, alpha, beta);
}
}
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
if (myImageID == 0) *out << "Y_in vector after local multiply/export..." << std::endl;
Y_in.describe(*out,Teuchos::VERB_EXTREME);
#endif
// Handle case of rangemap being a local replicated map: in this case, sum contributions from each processor
if (Y_is_replicated) {
Y_in.reduce();
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
if (myImageID == 0) *out << "Output vector is local; result after reduce()..." << std::endl;
Y_in.describe(*out,Teuchos::VERB_EXTREME);
#endif
}
}
//! Apply the matrix (not its transpose) to X_in, producing Y_in.
void
applyNonTranspose (const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X_in,
MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Y_in,
Scalar alpha,
Scalar beta) const
{
using Teuchos::null;
using Teuchos::RCP;
using Teuchos::rcp;
using Teuchos::rcp_const_cast;
using Teuchos::rcpFromRef;
typedef Export<LocalOrdinal,GlobalOrdinal,Node> export_type;
typedef Import<LocalOrdinal,GlobalOrdinal,Node> import_type;
typedef Teuchos::ScalarTraits<Scalar> STS;
const int myImageID = matrix_->getComm ()->getRank ();
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
RCP<Teuchos::FancyOStream> out = Teuchos::VerboseObjectBase::getDefaultOStream();
if (myImageID == 0) {
*out << "Entering CrsMatrixMultiplyOp::applyNonTranspose()" << std::endl
<< "Column Map: " << std::endl;
}
*out << matrix_->getColMap() << std::endl;
if (myImageID == 0) {
*out << "Initial input: " << std::endl;
}
X_in.describe (*out, Teuchos::VERB_EXTREME);
#endif // TPETRA_CRSMATRIX_MULTIPLY_DUMP
// because of Views, it is difficult to determine if X and Y point to the same data.
// however, if they reference the exact same object, we will do the user the favor of copying X into new storage (with a warning)
// we ony need to do this if we have trivial importers; otherwise, we don't actually apply the operator from X into Y
RCP<const import_type> importer = matrix_->getGraph()->getImporter();
RCP<const export_type> exporter = matrix_->getGraph()->getExporter();
// If beta == 0, then the output MV will be overwritten; none of
// its entries should be read. (Sparse BLAS semantics say that we
// must ignore any Inf or NaN entries in Y_in, if beta is zero.)
// This matters if we need to do an Export operation; see below.
const bool Y_is_overwritten = (beta == STS::zero());
// We treat the case of a replicated MV output specially.
const bool Y_is_replicated = ! Y_in.isDistributed ();
// This is part of the "hack" for replicated MV output. We'll let
// each process do its thing, but do an all-reduce at the end to
// sum up the results. Setting beta=0 on all processes but Proc 0
// makes the math work out for the all-reduce. (This assumes that
// the replicated data is correctly replicated, so that the data
// are the same on all processes.)
if (Y_is_replicated && myImageID > 0) {
beta = STS::zero();
}
// Temporary MV for Import operation. After the block of code
// below, this will be an (Imported if necessary) column Map MV
// ready to give to localMultiply().
RCP<const MV> X_colMap;
if (importer.is_null ()) {
if (! X_in.isConstantStride ()) {
// Not all sparse mat-vec kernels can handle an input MV with
// nonconstant stride correctly, so we have to copy it in that
// case into a constant stride MV. To make a constant stride
// copy of X_in, we force creation of the column (== domain)
// Map MV (if it hasn't already been created, else fetch the
// cached copy). This avoids creating a new MV each time.
RCP<MV> X_colMapNonConst = getColumnMapMultiVector (X_in, true);
*X_colMapNonConst = X_in; // MV assignment just copies the data.
X_colMap = rcp_const_cast<const MV> (X_colMapNonConst);
}
else {
// The domain and column Maps are the same, so do the local
// multiply using the domain Map input MV X_in.
X_colMap = rcpFromRef (X_in);
}
}
else {
// We're doing an Import anyway, which will copy the relevant
// elements of the domain Map MV X_in into a separate column Map
// MV. Thus, we don't have to worry whether X_in is constant
// stride.
RCP<MV> X_colMapNonConst = getColumnMapMultiVector (X_in);
// Import from the domain Map MV to the column Map MV.
{
#ifdef HAVE_KOKKOSCLASSIC_CUDA_NODE_MEMORY_PROFILING
Teuchos::TimeMonitor lcltimer (*importTimer_);
#endif
X_colMapNonConst->doImport (X_in, *importer, INSERT);
}
X_colMap = rcp_const_cast<const MV> (X_colMapNonConst);
}
// Temporary MV for Export operation, or for copying a nonconstant
// stride output MV into a constant stride MV.
RCP<MV> Y_rowMap = getRowMapMultiVector (Y_in);
// If we have a nontrivial Export object, we must perform an
// Export. In that case, the local multiply result will go into
// the row Map multivector. We don't have to make a
// constant-stride version of Y_in in this case, because we had to
// make a constant stride Y_rowMap MV and do an Export anyway.
if (! exporter.is_null ()) {
matrix_->template localMultiply<Scalar, Scalar> (*X_colMap, *Y_rowMap,
Teuchos::NO_TRANS,
alpha, STS::zero());
// If we're overwriting the output MV Y_in completely (beta ==
// 0), then make sure that it is filled with zeros before we do
// the Export. Otherwise, the ADD combine mode will use data in
// Y_in, which is supposed to be zero.
if (Y_is_overwritten) {
Y_in.putScalar (STS::zero());
}
else {
// Scale the output MV by beta, so that the Export sums in the
// mat-vec contribution: Y_in = beta*Y_in + alpha*A*X_in.
Y_in.scale (beta);
}
// Do the Export operation.
{
#ifdef HAVE_KOKKOSCLASSIC_CUDA_NODE_MEMORY_PROFILING
Teuchos::TimeMonitor lcltimer (*exportTimer_);
#endif
Y_in.doExport (*Y_rowMap, *exporter, ADD);
}
}
else { // Don't do an Export: row Map and range Map are the same.
//
// If Y_in does not have constant stride, or if the column Map
// MV aliases Y_in, then we can't let the kernel write directly
// to Y_in. Instead, we have to use the cached row (== range)
// Map MV as temporary storage.
if (! Y_in.isConstantStride () || X_colMap.getRawPtr () == &Y_in) {
// Force creating the MV if it hasn't been created already.
// This will reuse a previously created cached MV.
Y_rowMap = getRowMapMultiVector (Y_in, true);
// If beta == 0, we don't need to copy Y_in into Y_rowMap,
// since we're overwriting it anyway.
if (beta != STS::zero ()) {
deep_copy (*Y_rowMap, Y_in);
}
matrix_->template localMultiply<Scalar, Scalar> (*X_colMap,
*Y_rowMap,
Teuchos::NO_TRANS,
alpha, beta);
deep_copy (Y_in, *Y_rowMap);
}
else {
matrix_->template localMultiply<Scalar, Scalar> (*X_colMap, Y_in,
Teuchos::NO_TRANS,
alpha, beta);
}
}
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
if (myImageID == 0) {
*out << "Result Y_in after localMultiply and Export:" << std::endl;
}
Y_in.describe (*out, Teuchos::VERB_EXTREME);
#endif // TPETRA_CRSMATRIX_MULTIPLY_DUMP
// If the range Map is a locally replicated Map, sum up
// contributions from each process. We set beta = 0 on all
// processes but Proc 0 initially, so this will handle the scaling
// factor beta correctly.
if (Y_is_replicated) {
Y_in.reduce ();
#ifdef TPETRA_CRSMATRIX_MULTIPLY_DUMP
if (myImageID == 0) {
*out << "Result Y_in after reduce:" << std::endl;
}
Y_in.describe (*out, Teuchos::VERB_EXTREME);
#endif // TPETRA_CRSMATRIX_MULTIPLY_DUMP
}
}
private:
/// \brief Create a (or fetch a cached) column Map MultiVector.
///
/// \param X_domainMap [in] A domain Map Multivector. The
/// returned MultiVector, if nonnull, will have the same number
/// of columns as Y_domainMap.
///
/// \param force [in] Force creating the MultiVector if it hasn't
/// been created already.
///
/// The \c force parameter is helpful when the domain Map and the
/// column Map are the same (so that normally we wouldn't need the
/// column Map MultiVector), but the following (for example)
/// holds:
///
/// 1. The kernel needs a constant stride input MultiVector, but
/// the given input MultiVector is not constant stride.
///
/// We don't test for the above in this method, because it depends
/// on the specific kernel.
Teuchos::RCP<MV>
getColumnMapMultiVector (const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& X_domainMap,
const bool force = false) const
{
using Teuchos::null;
using Teuchos::RCP;
using Teuchos::rcp;
typedef Import<LocalOrdinal,GlobalOrdinal,Node> import_type;
typedef Map<LocalOrdinal,GlobalOrdinal,Node> map_type;
const size_t numVecs = X_domainMap.getNumVectors ();
RCP<const import_type> importer = matrix_->getGraph ()->getImporter ();
RCP<const map_type> colMap = matrix_->getColMap ();
RCP<MV> X_colMap; // null by default
// If the Import object is trivial (null), then we don't need a
// separate column Map multivector. Just return null in that
// case. The caller is responsible for knowing not to use the
// returned null pointer.
//
// If the Import is nontrivial, then we do need a separate
// column Map multivector for the Import operation. Check in
// that case if we have to (re)create the column Map
// multivector.
if (! importer.is_null () || force) {
if (importMV_.is_null () || importMV_->getNumVectors () != numVecs) {
X_colMap = rcp (new MV (colMap, numVecs));
// Cache the newly created multivector for later reuse.
importMV_ = X_colMap;
}
else { // Yay, we can reuse the cached multivector!
X_colMap = importMV_;
// mfh 09 Jan 2013: We don't have to fill with zeros first,
// because the Import uses INSERT combine mode, which overwrites
// existing entries.
//
//X_colMap->putScalar (STS::zero ());
}
}
return X_colMap;
}
/// \brief Create a (or fetch a cached) row Map MultiVector.
///
/// \param Y_rangeMap [in] A range Map Multivector. The returned
/// MultiVector, if nonnull, will have the same number of
/// columns as Y_rangeMap.
///
/// \param force [in] Force creating the MultiVector if it hasn't
/// been created already.
///
/// The \c force parameter is helpful when the range Map and the
/// row Map are the same (so that normally we wouldn't need the
/// row Map MultiVector), but one of the following holds:
///
/// 1. The kernel needs a constant stride output MultiVector,
/// but the given output MultiVector is not constant stride.
///
/// 2. The kernel does not permit aliasing of its input and output
/// MultiVector arguments, but they do alias each other.
///
/// We don't test for the above in this method, because it depends
/// on the specific kernel.
Teuchos::RCP<MV>
getRowMapMultiVector (const MultiVector<Scalar,LocalOrdinal,GlobalOrdinal,Node>& Y_rangeMap,
const bool force = false) const
{
using Teuchos::null;
using Teuchos::RCP;
using Teuchos::rcp;
typedef Export<LocalOrdinal,GlobalOrdinal,Node> export_type;
typedef Map<LocalOrdinal,GlobalOrdinal,Node> map_type;
const size_t numVecs = Y_rangeMap.getNumVectors ();
RCP<const export_type> exporter = matrix_->getGraph ()->getExporter ();
RCP<const map_type> rowMap = matrix_->getRowMap ();
RCP<MV> Y_rowMap; // null by default
// If the Export object is trivial (null), then we don't need a
// separate row Map multivector. Just return null in that case.
// The caller is responsible for knowing not to use the returned
// null pointer.
//
// If the Export is nontrivial, then we do need a separate row
// Map multivector for the Export operation. Check in that case
// if we have to (re)create the row Map multivector.
if (! exporter.is_null () || force) {
if (exportMV_.is_null () || exportMV_->getNumVectors () != numVecs) {
Y_rowMap = rcp (new MV (rowMap, numVecs));
// Cache the newly created multivector for later reuse.
exportMV_ = Y_rowMap;
}
else { // Yay, we can reuse the cached multivector!
Y_rowMap = exportMV_;
}
}
return Y_rowMap;
}
};
/// \brief Non-member function to create a CrsMatrixMultiplyOp.
/// \relatesalso CrsMatrixMultiplyOp
///
/// The function has the same template parameters of CrsMatrixMultiplyOp.
///
/// \param A [in] The CrsMatrix instance to wrap in an CrsMatrixMultiplyOp.
/// \return The CrsMatrixMultiplyOp wrapper for the given CrsMatrix.
template <class OpScalar,
class MatScalar,
class LocalOrdinal,
class GlobalOrdinal,
class Node>
Teuchos::RCP<
CrsMatrixMultiplyOp<OpScalar, MatScalar, LocalOrdinal, GlobalOrdinal, Node> >
createCrsMatrixMultiplyOp (const Teuchos::RCP<
const CrsMatrix<MatScalar, LocalOrdinal, GlobalOrdinal, Node> >& A)
{
typedef CrsMatrixMultiplyOp<OpScalar, MatScalar, LocalOrdinal,
GlobalOrdinal, Node> op_type;
return Teuchos::rcp (new op_type (A));
}
} // end of namespace Tpetra
#endif // TPETRA_CRSMATRIXMULTIPLYOP_HPP
|