This file is indexed.

/usr/include/trilinos/Tpetra_Details_crsMatrixAssembleElement.hpp is in libtrilinos-tpetra-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
// @HEADER
// ***********************************************************************
//
//          Tpetra: Templated Linear Algebra Services Package
//                 Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef TPETRA_DETAILS_CRSMATRIXASSEMBLEELEMENT_HPP
#define TPETRA_DETAILS_CRSMATRIXASSEMBLEELEMENT_HPP

#include "Kokkos_Sparse_CrsMatrix.hpp"
#include "Tpetra_Details_shortSort.hpp"
#include <type_traits>

namespace Tpetra {
namespace Details {

/// \brief <tt> A(lclRow, lclColsInds[sortPerm[j]]) += vals[sortPerm[j]]</tt>,
///   for all j in </tt>0 .. eltDim-1</tt>.
///
/// In the row of the matrix A with the local row index lclRow, find
/// entries with column indices lclColInds, and sum into those entries
/// with vals.  Assume that lclColInds[sortPerm] is sorted, and that
/// the column indices in that row of the matrix are sorted as well.
/// Use linear search to find the entries in that row of the matrix.
///
/// \tparam SparseMatrixType Specialization of KokkosSparse::CrsMatrix.
/// \tparam ValsViewType Specialization of a 1-D Kokkos::View.
///
/// \param A [in/out] Sparse matrix whose entries to modify.
/// \param lclRow [in] Local index of the row in the matrix A to
///   modify.  lclRow MUST be a valid local row index of A.
/// \param lclColInds [in] Local column indices to modify in that row.
/// \param sortPerm [in] Permutation that makes lclColInds sorted.
///   That is, <tt>lclColInds[sortPerm]</tt> is sorted.
/// \param vals [in] Input 1-D Kokkos::View of the values to ruse.
///   This is a Kokkos::View and not a raw 1-D array, because it may
///   be strided, if the original element being used (see
///   crsMatrixSumInElement) has a column-major layout.
/// \param numEntInInput [in] Number of entries in the input.  This
///   function will read the first numEntInInput entries of
///   lclColInds, sortPerm, and vals.
/// \param forceAtomic [in] Whether to use atomic updates when
///   modifying the entries of the matrix A.  This MUST be a
///   compile-time constant.  It defaults to whether the matrix's
///   Kokkos execution space is NOT Kokkos::Serial.
/// \param checkInputIndices [in] Whether to check whether the input
///   indices are valid column indices before just using them.  For
///   forwards compatibility, this should always be a compile-time
///   constant.  Default is true, that is, always check.
///
/// \return If checkInputIndices is true, return the number of input
///   indices that are valid column indices in that row of the matrix.
///   If checkInputIndices is false, just return numEntInInput.
template<class SparseMatrixType,
         class ValsViewType>
KOKKOS_FUNCTION
typename SparseMatrixType::ordinal_type
crsMatrixSumIntoValues_sortedSortedLinear (const SparseMatrixType& A,
                                           const typename SparseMatrixType::ordinal_type lclRow,
                                           const typename SparseMatrixType::ordinal_type lclColInds[],
                                           const typename SparseMatrixType::ordinal_type sortPerm[],
                                           const ValsViewType& vals,
                                           const typename SparseMatrixType::ordinal_type numEntInInput,
                                           const bool forceAtomic =
#ifdef KOKKOS_HAVE_SERIAL
                                           ! std::is_same<typename SparseMatrixType::device_type::execution_space, Kokkos::Serial>::type,
#else // NOT KOKKOS_HAVE_SERIAL
                                           false,
#endif // KOKKOS_HAVE_SERIAL
                                           const bool checkInputIndices = true)
{
  typedef typename std::remove_const<typename SparseMatrixType::value_type>::type
    matrix_scalar_type;
  static_assert (std::is_same<matrix_scalar_type,
                 typename SparseMatrixType::value_type>::value,
                 "The matrix's entries must have a nonconst type.");
  // static_assert (std::is_assignable<matrix_scalar_type,
  //                typename std::decay< decltype (A.values[0] + vals[0]) >::type>::value,
  //                "The result of adding a matrix entry and an entry of vals "
  //                "MUST be assignable to a matrix entry.");
  typedef typename SparseMatrixType::ordinal_type LO;
  static_assert (std::is_integral<LO>::value, "SparseMatrixType::ordinal_type "
                 "must be a built-in integer type.");

  // If lclRow is NOT a valid row index, this will return a view of
  // zero entries.  If checkInputIndices is true, thus, then none of
  // the input indices will be valid in that case.
  auto row_view = A.row (lclRow);
  const LO numEntInRow = static_cast<LO> (row_view.length);
  // Number of valid local column indices found, that is, the number
  // of input indices that are valid column indices found in row
  // lclRow of the matrix.  If not checking, we just return the number
  // of input indices.
  LO numValid = checkInputIndices ? static_cast<LO> (0) : numEntInRow;

  // Since both the matrix row and the input (after permutation) are
  // sorted, we only need to pass once over the matrix row.  'offset'
  // tells us the current search position in the matrix row.
  LO offset = 0;
  for (LO j = 0; j < numEntInInput; ++j) {
    const LO perm_index = sortPerm[j];
    const LO lclColInd = lclColInds[perm_index];
    // Search linearly in the matrix row for the current index.
    // If we ever want binary search, this would be the place.
    while (row_view.colidx(offset) != lclColInd) {
      ++offset;
    }

    // If we could make checkInputIndices a compile-time constant,
    // then the compiler might not need to insert a branch here.  This
    // should help vectorization, if vectorization is possible.
    if (checkInputIndices) {
      if (offset != numEntInRow) {
        // If we could make forceAtomic a compile-time constant, then
        // the compiler might not need to insert a branch here.  This
        // should help vectorization, if vectorization is possible.
        if (forceAtomic) {
          Kokkos::atomic_add (&(row_view.value(offset)), vals[perm_index]);
        }
        else {
          row_view.value(offset) += vals[perm_index];
        }
        ++numValid;
      }
    }
    else { // don't check input indices; assume they are in the row
      // See above note on forceAtomic.
      if (forceAtomic) {
        Kokkos::atomic_add (&(row_view.value(offset)), vals[perm_index]);
      }
      else {
        row_view.value(offset) += vals[perm_index];
      }
    }
  }

  return numValid;
}

/// \brief <tt> A(lclRow, lclColsInds[sortPerm[j]]) = vals[sortPerm[j]]</tt>,
///   for all j in </tt>0 .. eltDim-1</tt>.
///
/// In the row of the matrix A with the local row index lclRow, find
/// entries with column indices lclColInds, and replace those entries
/// with vals.  Assume that lclColInds[sortPerm] is sorted, and that
/// the column indices in that row of the matrix are sorted as well.
/// Use linear search to find the entries in that row of the matrix.
///
/// \tparam SparseMatrixType Specialization of KokkosSparse::CrsMatrix.
/// \tparam ValsViewType Specialization of a 1-D Kokkos::View.
///
/// \param A [in/out] Sparse matrix whose entries to modify.
/// \param lclRow [in] Local index of the row in the matrix A to
///   modify.  lclRow MUST be a valid local row index of A.
/// \param lclColInds [in] Local column indices to modify in that row.
/// \param sortPerm [in] Permutation that makes lclColInds sorted.
///   That is, <tt>lclColInds[sortPerm]</tt> is sorted.
/// \param vals [in] Input 1-D Kokkos::View of the values to use.
///   This is a Kokkos::View and not a raw 1-D array, because it may
///   be strided, if the original element being used (see
///   crsMatrixSumInElement) has a column-major layout.
/// \param numEntInInput [in] Number of entries in the input.  This
///   function will read the first numEntInInput entries of
///   lclColInds, sortPerm, and vals.
/// \param forceAtomic [in] Whether to use atomic updates when
///   modifying the entries of the matrix A.  For forwards
///   compatibility, this should always be a compile-time constant.
///   It defaults to whether the matrix's Kokkos execution space is
///   NOT Kokkos::Serial.
/// \param checkInputIndices [in] Whether to check whether the input
///   indices are valid column indices before just using them.  This
///   MUST be a compile-time constant.  Default is true, that is,
///   always check.
///
/// \return If checkInputIndices is true, return the number of input
///   indices that are valid column indices in that row of the matrix.
///   If checkInputIndices is false, just return numEntInInput.
template<class SparseMatrixType,
         class ValsViewType>
KOKKOS_FUNCTION
typename SparseMatrixType::ordinal_type
crsMatrixReplaceValues_sortedSortedLinear (const SparseMatrixType& A,
                                           const typename SparseMatrixType::ordinal_type lclRow,
                                           const typename SparseMatrixType::ordinal_type lclColInds[],
                                           const typename SparseMatrixType::ordinal_type sortPerm[],
                                           const ValsViewType& vals,
                                           const typename SparseMatrixType::ordinal_type numEntInInput,
                                           const bool forceAtomic =
#ifdef KOKKOS_HAVE_SERIAL
                                           ! std::is_same<typename SparseMatrixType::device_type::execution_space, Kokkos::Serial>::type,
#else // NOT KOKKOS_HAVE_SERIAL
                                           false,
#endif // KOKKOS_HAVE_SERIAL
                                           const bool checkInputIndices = true)
{
  typedef typename std::remove_const<typename SparseMatrixType::value_type>::type
    matrix_scalar_type;
  static_assert (std::is_same<matrix_scalar_type,
                 typename SparseMatrixType::value_type>::value,
                 "The matrix's entries must have a nonconst type.");
  static_assert (std::is_assignable<matrix_scalar_type,
                 typename std::decay< decltype (A.values[0] + vals[0]) >::type>::value,
                 "The result of adding a matrix entry and an entry of vals "
                 "MUST be assignable to a matrix entry.");
  typedef typename SparseMatrixType::ordinal_type LO;
  static_assert (std::is_integral<LO>::value, "SparseMatrixType::ordinal_type "
                 "must be a built-in integer type.");

  // If lclRow is NOT a valid row index, this will return a view of
  // zero entries.  If checkInputIndices is true, thus, then none of
  // the input indices will be valid in that case.
  auto row_view = A.row (lclRow);
  const LO numEntInRow = static_cast<LO> (row_view.length);
  // Number of valid local column indices found, that is, the number
  // of input indices that are valid column indices found in row
  // lclRow of the matrix.  If not checking, we just return the number
  // of input indices.
  LO numValid = checkInputIndices ? static_cast<LO> (0) : numEntInRow;

  // Since both the matrix row and the input (after permutation) are
  // sorted, we only need to pass once over the matrix row.  'offset'
  // tells us the current search position in the matrix row.
  LO offset = 0;
  for (LO j = 0; j < numEntInInput; ++j) {
    const LO perm_index = sortPerm[j];
    const LO lclColInd = lclColInds[perm_index];
    // Search linearly in the matrix row for the current index.
    // If we ever want binary search, this would be the place.
    while (row_view.colidx(offset) != lclColInd) {
      ++offset;
    }

    // If checkInputIndices were a compile-time constant, then the
    // compiler might not need to insert a branch here.  This should
    // help vectorization, if vectorization is possible at all.
    if (checkInputIndices) {
      if (offset != numEntInRow) {
        // If forceAtomic were a compile-time constant, then the
        // compiler might not need to insert a branch here.  This
        // could help vectorization, if vectorization is possible.
        if (forceAtomic) {
          Kokkos::atomic_assign (&(row_view.value(offset)), vals[perm_index]);
        }
        else {
          row_view.value(offset) += vals[perm_index];
        }
        ++numValid;
      }
    }
    else { // don't check input indices; assume they are in the row
      // See above note on forceAtomic.
      if (forceAtomic) {
        Kokkos::atomic_add (&(row_view.value(offset)), vals[perm_index]);
      }
      else {
        row_view.value(offset) += vals[perm_index];
      }
    }
  }

  return numValid;
}

/// \brief <tt>A(lids[j], lids[j]) += lhs(j,j)</tt> and
///   <tt>x(lids[j]) += rhs(j)</tt>,
///   for all j in </tt>0 .. eltDim-1</tt>.
///
/// Assume the following:
/// <ul>
/// <li>In each row of the sparse matrix A, the column indices are
///   sorted.</li>
/// <li>The row and column indices of A have the same local indexing
///   scheme, that is, a valid row index is a valid column index and
///   vice versa.</li>
/// </ul>
/// Sum the dense "element" matrix (2-D Kokkos::View) \c lhs into the
/// entries of the sparse matrix A corresponding to the input row and
/// column indices \c lids.  Also, sum the dense "element" vector (1-D
/// Kokkos::View) \c rhs into the entries of the dense vector x
/// corresponding to the input row indices \c lids.
///
/// \tparam SparseMatrixType Specialization of KokkosSparse::CrsMatrix.
/// \tparam RhsViewType Specialization of a 1-D Kokkos::View.
/// \tparam LhsViewType Specialization of a 2-D Kokkos::View.
///
/// \param A [in/out] Sparse matrix (KokkosSparse::CrsMatrix) to modify.
/// \param x [in/out] Dense vector (1-D Kokkos::View) to modify.
/// \param lids [in/out] Local row and column indices of A to modify.
///   This function may sort this array, and output the permutation
///   that makes it sorted to \c sortPerm.  \c lids must have the same
///   number of entries as <tt>rhs.dimension_0()</tt>,
///   <tt>lhs.dimension_0()</tt>, and <tt>lhs.dimension_1()</tt>.
/// \param sortPerm [out] Permutation that makes \c lids (on input)
///   sorted.  It must have the same number of writeable entries as
///   \c lids (see above).
/// \param rhs [in] Dense "element" vector of input values to sum into
///   the dense vector x; a 1-D Kokkos::View.  It must have the same
///   number of entries as each dimension of \c lhs.
/// \param lhs [in] Dense, square "element" matrix of input values to
///   sum into the sparse matrix A; a 2-D Kokkos::View.  Each of its
///   dimensions must be the same as the number of entries in \c rhs.
/// \param forceAtomic [in] Whether to use atomic updates when
///   modifying the entries of the matrix A and vector x.  For
///   forwards compatibility, this should always be a compile-time
///   constant.  It defaults to whether the matrix's Kokkos execution
///   space is NOT Kokkos::Serial.
/// \param checkInputIndices [in] Whether to check whether the input
///   indices are valid column indices before just using them.  This
///   MUST be a compile-time constant.  Default is true, that is,
///   always check.
///
/// \return If checkInputIndices is true, return the number of input
///   indices that are valid column indices in that row of the matrix.
///   If checkInputIndices is false, just return numEntInInput.
template<class SparseMatrixType,
         class VectorViewType,
         class RhsViewType,
         class LhsViewType>
KOKKOS_FUNCTION
typename SparseMatrixType::ordinal_type
crsMatrixAssembleElement_sortedLinear (const SparseMatrixType& A,
                                       const VectorViewType& x,
                                       typename SparseMatrixType::ordinal_type lids[],
                                       typename SparseMatrixType::ordinal_type sortPerm[],
                                       const RhsViewType& rhs,
                                       const LhsViewType& lhs,
                                       const bool forceAtomic =
#ifdef KOKKOS_HAVE_SERIAL
                                       ! std::is_same<typename SparseMatrixType::device_type::execution_space, Kokkos::Serial>::type,
#else // NOT KOKKOS_HAVE_SERIAL
                                       false,
#endif // KOKKOS_HAVE_SERIAL
                                       const bool checkInputIndices = true)
{
  typedef typename std::remove_const<typename SparseMatrixType::value_type>::type
    matrix_scalar_type;
  typedef typename std::remove_const<typename VectorViewType::value_type>::type
    vector_scalar_type;
  static_assert (std::is_same<matrix_scalar_type,
                 typename SparseMatrixType::value_type>::value,
                 "The sparse output matrix A's entries must have a nonconst type.");
  static_assert (std::is_same<vector_scalar_type,
                 typename VectorViewType::value_type>::value,
                 "The dense output vector x's entries must have a nonconst type.");
  // static_assert (std::is_assignable<matrix_scalar_type,
  //                typename std::decay< decltype (A.values[0] + lhs(0,0)) >::type>::value,
  //                "The result of adding a sparse matrix entry and an entry of "
  //                "lhs (the dense element matrix) "
  //                "MUST be assignable to a matrix entry.");
  // static_assert (std::is_assignable<vector_scalar_type,
  //                typename std::decay< decltype (x[0] + rhs[0]) >::type>::value,
  //                "The result of adding a vector entry and an entry of "
  //                "rhs (the dense element vector) "
  //                "MUST be assignable to a vector entry.");
  typedef typename SparseMatrixType::ordinal_type LO;
  static_assert (std::is_integral<LO>::value, "SparseMatrixType::ordinal_type "
                 "must be a built-in integer type.");

  const LO eltDim = rhs.dimension_0 ();

  // Generate sort permutation
  for (LO i = 0; i < eltDim; ++i) {
    sortPerm[i] = i;
  }
  shellSortKeysAndValues (lids, sortPerm, eltDim);

  LO totalNumValid = 0;
  for (LO r = 0; r < eltDim; ++r) {
    const LO lid = lids[r];
    //auto lhs_r = Kokkos::subview (lhs, sortPerm[r], Kokkos::ALL ());
    auto lhs_r = Kokkos::subview (lhs, r, Kokkos::ALL ());

    // This assumes that lid is always a valid row in the sparse
    // matrix, and that the local indices in each row of the matrix
    // are always sorted.
    const LO curNumValid =
      crsMatrixSumIntoValues_sortedSortedLinear (A, lid, lids, sortPerm, lhs_r,
                                                 eltDim, forceAtomic,
                                                 checkInputIndices);
    if (forceAtomic) {
      Kokkos::atomic_add (&x(lid), rhs(sortPerm[r]));
    }
    else {
      x(lid) += rhs(sortPerm[r]);
    }
    totalNumValid += curNumValid;
  }
  return totalNumValid;
}

} // namespace Details
} // namespace Tpetra

#endif // TPETRA_DETAILS_CRSMATRIXASSEMBLEELEMENT_HPP