/usr/include/trilinos/Tsqr_Matrix.hpp is in libtrilinos-tpetra-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef __TSQR_Tsqr_Matrix_hpp
#define __TSQR_Tsqr_Matrix_hpp
#include <Tsqr_Util.hpp>
#include <Tsqr_MatView.hpp>
#include <stdexcept>
#include <sstream>
#include <limits>
#include <vector>
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
namespace TSQR {
/// \class Matrix
/// \brief A column-oriented dense matrix
/// \author Mark Hoemmen
///
/// A column-oriented dense matrix, with indices of type Ordinal and
/// elements of type Scalar.
///
/// \note This class resembles Teuchos::SerialDenseMatrix. It
/// existed originally because there was a need for TSQR to build
/// independently of Teuchos. That requirement no longer exists,
/// but for various reasons it has been helpful to keep Matrix
/// around. In particular, I can change the interface of Matrix
/// without affecting other Teuchos users.
template<class Ordinal, class Scalar>
class Matrix {
public:
typedef MatView<Ordinal, Scalar> mat_view_type;
typedef ConstMatView<Ordinal, Scalar> const_mat_view_type;
private:
static bool
fits_in_size_t (const Ordinal& ord)
{
const Ordinal result = static_cast< Ordinal > (static_cast< size_t > (ord));
return (ord == result);
}
/// Check whether num_rows*num_cols makes sense as an amount of
/// storage (for the num_rows by num_cols dense matrix). Not
/// making sense includes negative values for either parameter (if
/// they are signed types), or overflow when computing their
/// product. Throw an exception of the appropriate type for any
/// of these cases. Otherwise, return num_rows*num_cols as a
/// size_t.
///
/// \param num_rows [in] Number of rows in the matrix
/// \param num_cols [in] Number of columns in the matrix
/// \return num_rows*num_cols
size_t
verified_alloc_size (const Ordinal num_rows,
const Ordinal num_cols) const
{
if (! std::numeric_limits< Ordinal >::is_integer)
throw std::logic_error("Ordinal must be an integer type");
// Quick exit also checks for zero num_cols (which prevents
// division by zero in the tests below).
if (num_rows == 0 || num_cols == 0)
return size_t(0);
// If Ordinal is signed, make sure that num_rows and num_cols
// are nonnegative.
if (std::numeric_limits< Ordinal >::is_signed)
{
if (num_rows < 0)
{
std::ostringstream os;
os << "# rows (= " << num_rows << ") < 0";
throw std::logic_error (os.str());
}
else if (num_cols < 0)
{
std::ostringstream os;
os << "# columns (= " << num_cols << ") < 0";
throw std::logic_error (os.str());
}
}
// If Ordinal is bigger than a size_t, do special range
// checking. The compiler warns (comparison of signed and
// unsigned) if Ordinal is a signed type and we try to do
// "numeric_limits<size_t>::max() <
// std::numeric_limits<Ordinal>::max()", so instead we cast each
// of num_rows and num_cols to size_t and back to Ordinal again,
// and see if we get the same result. If not, then we
// definitely can't return a size_t product of num_rows and
// num_cols.
if (! fits_in_size_t (num_rows))
{
std::ostringstream os;
os << "# rows (= " << num_rows << ") > max size_t value (= "
<< std::numeric_limits<size_t>::max() << ")";
throw std::range_error (os.str());
}
else if (! fits_in_size_t (num_cols))
{
std::ostringstream os;
os << "# columns (= " << num_cols << ") > max size_t value (= "
<< std::numeric_limits<size_t>::max() << ")";
throw std::range_error (os.str());
}
// Both num_rows and num_cols fit in a size_t, and are
// nonnegative. Now check whether their product also fits in a
// size_t.
//
// Note: This may throw a SIGFPE (floating-point exception) if
// num_cols is zero. Be sure to check first (above).
if (static_cast<size_t>(num_rows) >
std::numeric_limits<size_t>::max() / static_cast<size_t>(num_cols))
{
std::ostringstream os;
os << "num_rows (= " << num_rows << ") * num_cols (= "
<< num_cols << ") > max size_t value (= "
<< std::numeric_limits<size_t>::max() << ")";
throw std::range_error (os.str());
}
return static_cast<size_t>(num_rows) * static_cast<size_t>(num_cols);
}
public:
typedef Scalar scalar_type;
typedef Ordinal ordinal_type;
typedef Scalar* pointer_type;
//! Constructor with dimensions.
Matrix (const Ordinal num_rows,
const Ordinal num_cols) :
nrows_ (num_rows),
ncols_ (num_cols),
A_ (verified_alloc_size (num_rows, num_cols))
{}
//! Constructor with dimensions and fill datum.
Matrix (const Ordinal num_rows,
const Ordinal num_cols,
const Scalar& value) :
nrows_ (num_rows),
ncols_ (num_cols),
A_ (verified_alloc_size (num_rows, num_cols), value)
{}
/// \brief Copy constructor.
///
/// We need an explicit copy constructor, because otherwise the
/// default copy constructor would override the generic matrix
/// view "copy constructor" below.
Matrix (const Matrix& in) :
nrows_ (in.nrows()),
ncols_ (in.ncols()),
A_ (verified_alloc_size (in.nrows(), in.ncols()))
{
if (! in.empty())
copy_matrix (nrows(), ncols(), get(), lda(), in.get(), in.lda());
}
//! Default constructor (constructs an empty matrix).
Matrix () : nrows_(0), ncols_(0), A_(0) {}
//! Trivial destructor.
~Matrix () {}
/// \brief "Copy constructor" from a matrix view type.
///
/// This constructor allocates a new matrix and copies the
/// elements of the input view into the resulting new matrix.
/// MatrixViewType must have nrows(), ncols(), get(), and lda()
/// methods that match MatView's methods.
template<class MatrixViewType>
Matrix (const MatrixViewType& in) :
nrows_ (in.nrows()),
ncols_ (in.ncols()),
A_ (verified_alloc_size (in.nrows(), in.ncols()))
{
if (A_.size() != 0)
copy_matrix (nrows(), ncols(), get(), lda(), in.get(), in.lda());
}
//! Fill all entries of the matrix with the given value.
void
fill (const Scalar value)
{
fill_matrix (nrows(), ncols(), get(), lda(), value);
}
/// \brief Non-const reference to element (i,j) of the matrix.
///
/// \param i [in] Zero-based row index of the matrix.
/// \param j [in] Zero-based column index of the matrix.
Scalar& operator() (const Ordinal i, const Ordinal j) {
return A_[i + j*lda()];
}
/// \brief Const reference to element (i,j) of the matrix.
///
/// \param i [in] Zero-based row index of the matrix.
/// \param j [in] Zero-based column index of the matrix.
const Scalar& operator() (const Ordinal i, const Ordinal j) const {
return A_[i + j*lda()];
}
//! 1-D std::vector - style access.
Scalar& operator[] (const Ordinal i) {
return A_[i];
}
//! Equality: ONLY compares dimensions and pointers (shallow).
template<class MatrixViewType>
bool operator== (const MatrixViewType& B) const
{
if (get() != B.get() || nrows() != B.nrows() || ncols() != B.ncols() || lda() != B.lda()) {
return false;
} else {
return true;
}
}
//! Number of rows in the matrix.
Ordinal nrows() const { return nrows_; }
//! Number of columns in the matrix.
Ordinal ncols() const { return ncols_; }
//! Leading dimension (a.k.a. stride) of the matrix.
Ordinal lda() const { return nrows_; }
//! Whether the matrix is empty (has either zero rows or zero columns).
bool empty() const { return nrows() == 0 || ncols() == 0; }
//! A non-const pointer to the matrix data.
Scalar*
get()
{
if (A_.size() > 0)
return &A_[0];
else
return static_cast<Scalar*> (NULL);
}
//! A const pointer to the matrix data.
const Scalar*
get() const
{
if (A_.size() > 0)
return &A_[0];
else
return static_cast<const Scalar*> (NULL);
}
//! A non-const view of the matrix.
mat_view_type view () {
return mat_view_type (nrows(), ncols(), get(), lda());
}
//! A const view of the matrix.
const_mat_view_type const_view () const {
return const_mat_view_type (nrows(), ncols(),
const_cast<const Scalar*> (get()), lda());
}
/// Change the dimensions of the matrix. Reallocate if necessary.
/// Existing data in the matrix is invalidated.
///
/// \param num_rows [in] New number of rows in the matrix
/// \param num_cols [in] New number of columns in the matrix
///
/// \warning This does <it>not</it> do the same thing as the
/// Matlab function of the same name. In particular, it does
/// not reinterpret the existing matrix data using different
/// dimensions.
void
reshape (const Ordinal num_rows, const Ordinal num_cols)
{
if (num_rows == nrows() && num_cols == ncols())
return; // no need to reallocate or do anything else
const size_t alloc_size = verified_alloc_size (num_rows, num_cols);
nrows_ = num_rows;
ncols_ = num_cols;
A_.resize (alloc_size);
}
private:
//! Number of rows in the matrix.
Ordinal nrows_;
//! Number of columns in the matrix.
Ordinal ncols_;
/// \brief Where the entries of the matrix are stored.
///
/// The matrix is stored using one-dimensional storage with
/// column-major (Fortran-style) indexing. This makes Matrix
/// compatible with the BLAS and LAPACK.
std::vector<Scalar> A_;
};
} // namespace TSQR
#endif // __TSQR_Tsqr_Matrix_hpp
|