/usr/include/trilinos/Tsqr_TbbTest.hpp is in libtrilinos-tpetra-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef __TSQR_Test_TbbTest_hpp
#define __TSQR_Test_TbbTest_hpp
#include <Tsqr_nodeTestProblem.hpp>
#include <Tsqr_verifyTimerConcept.hpp>
#include <Tsqr_Random_NormalGenerator.hpp>
#include <Tsqr_LocalVerify.hpp>
#include <Tsqr_Matrix.hpp>
#include <Tsqr_Util.hpp>
#include <TbbTsqr.hpp>
#include <Teuchos_LAPACK.hpp>
#include <Teuchos_Time.hpp>
#include <algorithm>
#include <cstring> // size_t definition
//#include <iomanip>
#include <iostream>
#include <limits>
#include <stdexcept>
#include <vector>
using std::make_pair;
using std::pair;
using std::vector;
using std::cerr;
using std::cout;
using std::endl;
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
namespace TSQR {
namespace Test {
/// Test the accuracy of Intel TBB TSQR on an nrows by ncols
/// matrix (using the given number of cores and the given cache
/// block size (in bytes)), and print the results to stdout.
template< class Ordinal, class Scalar >
void
verifyTbbTsqr (const std::string& scalarTypeName,
TSQR::Random::NormalGenerator< Ordinal, Scalar >& generator,
const Ordinal nrows,
const Ordinal ncols,
const int num_cores,
const size_t cache_size_hint,
const bool contiguous_cache_blocks,
const bool printFieldNames,
const bool human_readable,
const bool b_debug = false)
{
typedef Teuchos::Time timer_type;
typedef TSQR::TBB::TbbTsqr< Ordinal, Scalar, timer_type > node_tsqr_type;
typedef typename node_tsqr_type::FactorOutput factor_output_type;
typedef Teuchos::ScalarTraits<Scalar> STS;
typedef typename STS::magnitudeType magnitude_type;
using std::cerr;
using std::cout;
using std::endl;
node_tsqr_type actor (num_cores, cache_size_hint);
if (b_debug) {
cerr << "Intel TBB TSQR test problem:" << endl
<< "* " << nrows << " x " << ncols << endl
<< "* # cores: " << num_cores << endl
<< "* Cache size hint in bytes: " << actor.cache_size_hint() << endl;
if (contiguous_cache_blocks) {
cerr << "* Contiguous cache blocks" << endl;
}
}
Matrix< Ordinal, Scalar > A (nrows, ncols);
Matrix< Ordinal, Scalar > A_copy (nrows, ncols);
Matrix< Ordinal, Scalar > Q (nrows, ncols);
Matrix< Ordinal, Scalar > R (ncols, ncols);
if (std::numeric_limits< Scalar >::has_quiet_NaN) {
A.fill (std::numeric_limits< Scalar>::quiet_NaN());
A_copy.fill (std::numeric_limits< Scalar >::quiet_NaN());
Q.fill (std::numeric_limits< Scalar >::quiet_NaN());
R.fill (std::numeric_limits< Scalar >::quiet_NaN());
}
const Ordinal lda = nrows;
const Ordinal ldq = nrows;
const Ordinal ldr = ncols;
// Create a test problem
nodeTestProblem (generator, nrows, ncols, A.get(), A.lda(), true);
if (b_debug) {
cerr << "-- Generated test problem" << endl;
}
// Copy A into A_copy, since TSQR overwrites the input. If
// specified, rearrange the data in A_copy so that the data in
// each cache block is contiguously stored.
if (! contiguous_cache_blocks) {
deep_copy (A_copy, A);
if (b_debug) {
cerr << "-- Copied test problem from A into A_copy" << endl;
}
}
else {
actor.cache_block (nrows, ncols, A_copy.get(), A.get(), A.lda());
if (b_debug) {
cerr << "-- Reorganized test matrix to have contiguous "
"cache blocks" << endl;
}
// Verify cache blocking, when in debug mode.
if (b_debug) {
Matrix< Ordinal, Scalar > A2 (nrows, ncols);
if (std::numeric_limits< Scalar >::has_quiet_NaN) {
A2.fill (std::numeric_limits< Scalar >::quiet_NaN());
}
actor.un_cache_block (nrows, ncols, A2.get(), A2.lda(), A_copy.get());
if (matrix_equal (A, A2)) {
if (b_debug) {
cerr << "-- Cache blocking test succeeded!" << endl;
}
}
else {
throw std::logic_error ("Cache blocking failed");
}
}
}
// Fill R with zeros, since the factorization may not overwrite
// the strict lower triangle of R.
R.fill (Scalar(0));
// Factor the matrix and compute the explicit Q factor
factor_output_type factor_output =
actor.factor (nrows, ncols, A_copy.get(), A_copy.lda(), R.get(),
R.lda(), contiguous_cache_blocks);
if (b_debug) {
cerr << "-- Finished TbbTsqr::factor" << endl;
}
actor.explicit_Q (nrows, ncols, A_copy.get(), A_copy.lda(), factor_output,
ncols, Q.get(), Q.lda(), contiguous_cache_blocks);
if (b_debug) {
cerr << "-- Finished TbbTsqr::explicit_Q" << endl;
}
// "Un"-cache-block the output Q (the explicit Q factor), if
// contiguous cache blocks were used. This is only necessary
// because local_verify() doesn't currently support contiguous
// cache blocks.
if (contiguous_cache_blocks) {
// Use A_copy as temporary storage for un-cache-blocking Q.
actor.un_cache_block (nrows, ncols, A_copy.get(), A_copy.lda(), Q.get());
deep_copy (Q, A_copy);
if (b_debug) {
cerr << "-- Un-cache-blocked output Q factor" << endl;
}
}
// Print out the R factor
if (b_debug) {
cerr << endl << "-- R factor:" << endl;
print_local_matrix (cerr, ncols, ncols, R.get(), R.lda());
cerr << endl;
}
// Validate the factorization
std::vector< magnitude_type > results =
local_verify (nrows, ncols, A.get(), lda, Q.get(), ldq, R.get(), ldr);
if (b_debug) {
cerr << "-- Finished local_verify" << endl;
}
// Print the results
if (human_readable) {
cout << "Parallel (via Intel\'s Threading Building Blocks) / cache-blocked) TSQR:" << endl
<< "Scalar type: " << scalarTypeName << endl
<< "# rows: " << nrows << endl
<< "# columns: " << ncols << endl
<< "# cores: " << num_cores << endl
<< "Cache size hint in bytes: " << actor.cache_size_hint() << endl
<< "Contiguous cache blocks? " << contiguous_cache_blocks << endl
<< "Absolute residual $\\|A - Q*R\\|_2$: "
<< results[0] << endl
<< "Absolute orthogonality $\\|I - Q^T*Q\\|_2$: "
<< results[1] << endl
<< "Test matrix norm $\\| A \\|_F$: "
<< results[2] << endl
<< endl;
}
else {
if (printFieldNames) {
const char prefix[] = "%";
cout << prefix
<< "method"
<< ",scalarType"
<< ",numRows"
<< ",numCols"
<< ",numThreads"
<< ",cacheSizeHint"
<< ",contiguousCacheBlocks"
<< ",absFrobResid"
<< ",absFrobOrthog"
<< ",frobA"
<< endl;
}
cout << "TbbTsqr"
<< "," << scalarTypeName
<< "," << nrows
<< "," << ncols
<< "," << num_cores
<< "," << actor.cache_size_hint()
<< "," << contiguous_cache_blocks
<< "," << results[0]
<< "," << results[1]
<< "," << results[2]
<< endl;
}
}
/// \brief Benchmark Intel TBB TSQR vs. LAPACK's QR, and print the
/// results to stdout.
///
/// \note c++0x support is need in order to have a default
/// template parameter argument for a template function, otherwise
/// we would have templated this function on TimerType and made
/// Teuchos::Time the default.
template< class Ordinal, class Scalar >
void
benchmarkTbbTsqr (const std::string& scalarTypeName,
const int ntrials,
const Ordinal nrows,
const Ordinal ncols,
const int num_cores,
const size_t cache_size_hint,
const bool contiguous_cache_blocks,
const bool printFieldNames,
const bool human_readable)
{
using TSQR::TBB::TbbTsqr;
using std::cerr;
using std::cout;
using std::endl;
typedef Teuchos::Time timer_type;
typedef Ordinal ordinal_type;
typedef Scalar scalar_type;
typedef Matrix< ordinal_type, scalar_type > matrix_type;
typedef TbbTsqr< ordinal_type, scalar_type, timer_type > node_tsqr_type;
// Pseudorandom normal(0,1) generator. Default seed is OK,
// because this is a benchmark, not an accuracy test.
TSQR::Random::NormalGenerator< ordinal_type, scalar_type > generator;
// Set up TSQR implementation.
node_tsqr_type actor (num_cores, cache_size_hint);
matrix_type A (nrows, ncols);
matrix_type A_copy (nrows, ncols);
matrix_type Q (nrows, ncols);
matrix_type R (ncols, ncols, scalar_type(0));
// Fill R with zeros, since the factorization may not overwrite
// the strict lower triangle of R.
R.fill (scalar_type(0));
// Create a test problem
nodeTestProblem (generator, nrows, ncols, A.get(), A.lda(), false);
// Copy A into A_copy, since TSQR overwrites the input. If
// specified, rearrange the data in A_copy so that the data in
// each cache block is contiguously stored.
if (contiguous_cache_blocks) {
actor.cache_block (nrows, ncols, A_copy.get(), A.get(), A.lda());
}
else {
deep_copy (A_copy, A);
}
// Do a few timing runs and throw away the results, just to warm
// up any libraries that do autotuning.
const int numWarmupRuns = 5;
for (int warmupRun = 0; warmupRun < numWarmupRuns; ++warmupRun) {
// Factor the matrix in-place in A_copy, and extract the
// resulting R factor into R.
typedef typename node_tsqr_type::FactorOutput factor_output_type;
factor_output_type factor_output =
actor.factor (nrows, ncols, A_copy.get(), A_copy.lda(),
R.get(), R.lda(), contiguous_cache_blocks);
// Compute the explicit Q factor (which was stored
// implicitly in A_copy and factor_output) and store in Q.
// We don't need to un-cache-block the output, because we
// aren't verifying it here.
actor.explicit_Q (nrows, ncols, A_copy.get(), A_copy.lda(),
factor_output, ncols, Q.get(), Q.lda(),
contiguous_cache_blocks);
}
// Benchmark TBB-based TSQR for ntrials trials.
//
// Name of timer doesn't matter here; we only need the timing.
timer_type timer("TbbTsqr");
timer.start();
for (int trial_num = 0; trial_num < ntrials; ++trial_num) {
// Factor the matrix in-place in A_copy, and extract the
// resulting R factor into R.
typedef typename node_tsqr_type::FactorOutput factor_output_type;
factor_output_type factor_output =
actor.factor (nrows, ncols, A_copy.get(), A_copy.lda(),
R.get(), R.lda(), contiguous_cache_blocks);
// Compute the explicit Q factor (which was stored
// implicitly in A_copy and factor_output) and store in Q.
// We don't need to un-cache-block the output, because we
// aren't verifying it here.
actor.explicit_Q (nrows, ncols, A_copy.get(), A_copy.lda(),
factor_output, ncols, Q.get(), Q.lda(),
contiguous_cache_blocks);
}
const double tbb_tsqr_timing = timer.stop();
// Print the results
if (human_readable) {
cout << "(Intel TBB / cache-blocked) TSQR cumulative timings:" << endl
<< "Scalar type: " << scalarTypeName << endl
<< "# rows: " << nrows << endl
<< "# columns: " << ncols << endl
<< "# cores: " << num_cores << endl
<< "Cache size hint in bytes: " << actor.cache_size_hint() << endl
<< "Contiguous cache blocks? " << contiguous_cache_blocks << endl
<< "# trials: " << ntrials << endl
<< "Total time (s) = " << tbb_tsqr_timing << endl
<< "Total time (s) in factor() (min over all tasks): "
<< (ntrials * actor.min_seq_factor_timing()) << endl
<< "Total time (s) in factor() (max over all tasks): "
<< (ntrials * actor.max_seq_factor_timing()) << endl
<< "Total time (s) in apply() (min over all tasks): "
<< (ntrials * actor.min_seq_apply_timing()) << endl
<< "Total time (s) in apply() (max over all tasks): "
<< (ntrials * actor.max_seq_apply_timing()) << endl
<< endl << endl;
cout << "(Intel TBB / cache-blocked) TSQR per-invocation timings:" << endl;
std::vector<TimeStats> stats;
actor.getStats (stats);
std::vector<std::string> labels;
actor.getStatsLabels (labels);
const std::string labelLabel ("label");
for (std::vector<std::string>::size_type k = 0; k < labels.size(); ++k) {
const bool printHeaders = (k == 0);
if (stats[k].count() > 0)
stats[k].print (cout, human_readable, labels[k], labelLabel, printHeaders);
}
}
else {
if (printFieldNames) {
const char prefix[] = "%";
cout << prefix
<< "method"
<< ",scalarType"
<< ",numRows"
<< ",numCols"
<< ",numThreads"
<< ",cacheSizeHint"
<< ",contiguousCacheBlocks"
<< ",numTrials"
<< ",timing"
<< endl;
}
// We don't include {min,max}_seq_apply_timing() here, because
// those times don't benefit from the accuracy of benchmarking
// for ntrials > 1. Thus, it's misleading to include them
// with tbb_tsqr_timing, the total time over ntrials trials.
cout << "TbbTsqr"
<< "," << scalarTypeName
<< "," << nrows
<< "," << ncols
<< "," << num_cores
<< "," << actor.cache_size_hint()
<< "," << contiguous_cache_blocks
<< "," << ntrials
<< "," << tbb_tsqr_timing
<< endl;
}
}
} // namespace Test
} // namespace TSQR
#endif // __TSQR_Test_TbbTest_hpp
|