This file is indexed.

/usr/include/trilinos/Tsqr_TbbTest.hpp is in libtrilinos-tpetra-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
//@HEADER
// ************************************************************************
//
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER

#ifndef __TSQR_Test_TbbTest_hpp
#define __TSQR_Test_TbbTest_hpp

#include <Tsqr_nodeTestProblem.hpp>
#include <Tsqr_verifyTimerConcept.hpp>
#include <Tsqr_Random_NormalGenerator.hpp>


#include <Tsqr_LocalVerify.hpp>
#include <Tsqr_Matrix.hpp>
#include <Tsqr_Util.hpp>
#include <TbbTsqr.hpp>

#include <Teuchos_LAPACK.hpp>
#include <Teuchos_Time.hpp>

#include <algorithm>
#include <cstring> // size_t definition
//#include <iomanip>
#include <iostream>
#include <limits>
#include <stdexcept>
#include <vector>

using std::make_pair;
using std::pair;
using std::vector;

using std::cerr;
using std::cout;
using std::endl;

////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////

namespace TSQR {
  namespace Test {

    /// Test the accuracy of Intel TBB TSQR on an nrows by ncols
    /// matrix (using the given number of cores and the given cache
    /// block size (in bytes)), and print the results to stdout.
    template< class Ordinal, class Scalar >
    void
    verifyTbbTsqr (const std::string& scalarTypeName,
                   TSQR::Random::NormalGenerator< Ordinal, Scalar >& generator,
                   const Ordinal nrows,
                   const Ordinal ncols,
                   const int num_cores,
                   const size_t cache_size_hint,
                   const bool contiguous_cache_blocks,
                   const bool printFieldNames,
                   const bool human_readable,
                   const bool b_debug = false)
    {
      typedef Teuchos::Time timer_type;
      typedef TSQR::TBB::TbbTsqr< Ordinal, Scalar, timer_type > node_tsqr_type;
      typedef typename node_tsqr_type::FactorOutput factor_output_type;
      typedef Teuchos::ScalarTraits<Scalar> STS;
      typedef typename STS::magnitudeType magnitude_type;
      using std::cerr;
      using std::cout;
      using std::endl;

      node_tsqr_type actor (num_cores, cache_size_hint);

      if (b_debug) {
        cerr << "Intel TBB TSQR test problem:" << endl
             << "* " << nrows << " x " << ncols << endl
             << "* # cores: " << num_cores << endl
             << "* Cache size hint in bytes: " << actor.cache_size_hint() << endl;
        if (contiguous_cache_blocks) {
          cerr << "* Contiguous cache blocks" << endl;
        }
      }

      Matrix< Ordinal, Scalar > A (nrows, ncols);
      Matrix< Ordinal, Scalar > A_copy (nrows, ncols);
      Matrix< Ordinal, Scalar > Q (nrows, ncols);
      Matrix< Ordinal, Scalar > R (ncols, ncols);
      if (std::numeric_limits< Scalar >::has_quiet_NaN) {
        A.fill (std::numeric_limits< Scalar>::quiet_NaN());
        A_copy.fill (std::numeric_limits< Scalar >::quiet_NaN());
        Q.fill (std::numeric_limits< Scalar >::quiet_NaN());
        R.fill (std::numeric_limits< Scalar >::quiet_NaN());
      }
      const Ordinal lda = nrows;
      const Ordinal ldq = nrows;
      const Ordinal ldr = ncols;

      // Create a test problem
      nodeTestProblem (generator, nrows, ncols, A.get(), A.lda(), true);

      if (b_debug) {
        cerr << "-- Generated test problem" << endl;
      }

      // Copy A into A_copy, since TSQR overwrites the input.  If
      // specified, rearrange the data in A_copy so that the data in
      // each cache block is contiguously stored.
      if (! contiguous_cache_blocks) {
        deep_copy (A_copy, A);
        if (b_debug) {
          cerr << "-- Copied test problem from A into A_copy" << endl;
        }
      }
      else {
        actor.cache_block (nrows, ncols, A_copy.get(), A.get(), A.lda());
        if (b_debug) {
          cerr << "-- Reorganized test matrix to have contiguous "
            "cache blocks" << endl;
        }
        // Verify cache blocking, when in debug mode.
        if (b_debug) {
          Matrix< Ordinal, Scalar > A2 (nrows, ncols);
          if (std::numeric_limits< Scalar >::has_quiet_NaN) {
            A2.fill (std::numeric_limits< Scalar >::quiet_NaN());
          }
          actor.un_cache_block (nrows, ncols, A2.get(), A2.lda(), A_copy.get());
          if (matrix_equal (A, A2)) {
            if (b_debug) {
              cerr << "-- Cache blocking test succeeded!" << endl;
            }
          }
          else {
            throw std::logic_error ("Cache blocking failed");
          }
        }
      }

      // Fill R with zeros, since the factorization may not overwrite
      // the strict lower triangle of R.
      R.fill (Scalar(0));

      // Factor the matrix and compute the explicit Q factor
      factor_output_type factor_output =
        actor.factor (nrows, ncols, A_copy.get(), A_copy.lda(), R.get(),
                      R.lda(), contiguous_cache_blocks);
      if (b_debug) {
        cerr << "-- Finished TbbTsqr::factor" << endl;
      }
      actor.explicit_Q (nrows, ncols, A_copy.get(), A_copy.lda(), factor_output,
                        ncols, Q.get(), Q.lda(), contiguous_cache_blocks);
      if (b_debug) {
        cerr << "-- Finished TbbTsqr::explicit_Q" << endl;
      }

      // "Un"-cache-block the output Q (the explicit Q factor), if
      // contiguous cache blocks were used.  This is only necessary
      // because local_verify() doesn't currently support contiguous
      // cache blocks.
      if (contiguous_cache_blocks) {
        // Use A_copy as temporary storage for un-cache-blocking Q.
        actor.un_cache_block (nrows, ncols, A_copy.get(), A_copy.lda(), Q.get());
        deep_copy (Q, A_copy);
        if (b_debug) {
          cerr << "-- Un-cache-blocked output Q factor" << endl;
        }
      }

      // Print out the R factor
      if (b_debug) {
        cerr << endl << "-- R factor:" << endl;
        print_local_matrix (cerr, ncols, ncols, R.get(), R.lda());
        cerr << endl;
      }

      // Validate the factorization
      std::vector< magnitude_type > results =
        local_verify (nrows, ncols, A.get(), lda, Q.get(), ldq, R.get(), ldr);
      if (b_debug) {
        cerr << "-- Finished local_verify" << endl;
      }

      // Print the results
      if (human_readable) {
        cout << "Parallel (via Intel\'s Threading Building Blocks) / cache-blocked) TSQR:" << endl
             << "Scalar type: " << scalarTypeName << endl
             << "# rows: " << nrows << endl
             << "# columns: " << ncols << endl
             << "# cores: " << num_cores << endl
             << "Cache size hint in bytes: " << actor.cache_size_hint() << endl
             << "Contiguous cache blocks? " << contiguous_cache_blocks << endl
             << "Absolute residual $\\|A - Q*R\\|_2$: "
             << results[0] << endl
             << "Absolute orthogonality $\\|I - Q^T*Q\\|_2$: "
             << results[1] << endl
             << "Test matrix norm $\\| A \\|_F$: "
             << results[2] << endl
             << endl;
      }
      else {
        if (printFieldNames) {
          const char prefix[] = "%";
          cout << prefix
               << "method"
               << ",scalarType"
               << ",numRows"
               << ",numCols"
               << ",numThreads"
               << ",cacheSizeHint"
               << ",contiguousCacheBlocks"
               << ",absFrobResid"
               << ",absFrobOrthog"
               << ",frobA"
               << endl;
        }
        cout << "TbbTsqr"
             << "," << scalarTypeName
             << "," << nrows
             << "," << ncols
             << "," << num_cores
             << "," << actor.cache_size_hint()
             << "," << contiguous_cache_blocks
             << "," << results[0]
             << "," << results[1]
             << "," << results[2]
             << endl;
      }
    }

    /// \brief Benchmark Intel TBB TSQR vs. LAPACK's QR, and print the
    ///   results to stdout.
    ///
    /// \note c++0x support is need in order to have a default
    /// template parameter argument for a template function, otherwise
    /// we would have templated this function on TimerType and made
    /// Teuchos::Time the default.
    template< class Ordinal, class Scalar >
    void
    benchmarkTbbTsqr (const std::string& scalarTypeName,
                      const int ntrials,
                      const Ordinal nrows,
                      const Ordinal ncols,
                      const int num_cores,
                      const size_t cache_size_hint,
                      const bool contiguous_cache_blocks,
                      const bool printFieldNames,
                      const bool human_readable)
    {
      using TSQR::TBB::TbbTsqr;
      using std::cerr;
      using std::cout;
      using std::endl;

      typedef Teuchos::Time timer_type;
      typedef Ordinal ordinal_type;
      typedef Scalar scalar_type;
      typedef Matrix< ordinal_type, scalar_type > matrix_type;
      typedef TbbTsqr< ordinal_type, scalar_type, timer_type > node_tsqr_type;

      // Pseudorandom normal(0,1) generator.  Default seed is OK,
      // because this is a benchmark, not an accuracy test.
      TSQR::Random::NormalGenerator< ordinal_type, scalar_type > generator;

      // Set up TSQR implementation.
      node_tsqr_type actor (num_cores, cache_size_hint);

      matrix_type A (nrows, ncols);
      matrix_type A_copy (nrows, ncols);
      matrix_type Q (nrows, ncols);
      matrix_type R (ncols, ncols, scalar_type(0));

      // Fill R with zeros, since the factorization may not overwrite
      // the strict lower triangle of R.
      R.fill (scalar_type(0));

      // Create a test problem
      nodeTestProblem (generator, nrows, ncols, A.get(), A.lda(), false);

      // Copy A into A_copy, since TSQR overwrites the input.  If
      // specified, rearrange the data in A_copy so that the data in
      // each cache block is contiguously stored.
      if (contiguous_cache_blocks) {
        actor.cache_block (nrows, ncols, A_copy.get(), A.get(), A.lda());
      }
      else {
        deep_copy (A_copy, A);
      }

      // Do a few timing runs and throw away the results, just to warm
      // up any libraries that do autotuning.
      const int numWarmupRuns = 5;
      for (int warmupRun = 0; warmupRun < numWarmupRuns; ++warmupRun) {
        // Factor the matrix in-place in A_copy, and extract the
        // resulting R factor into R.
        typedef typename node_tsqr_type::FactorOutput factor_output_type;
        factor_output_type factor_output =
          actor.factor (nrows, ncols, A_copy.get(), A_copy.lda(),
                        R.get(), R.lda(), contiguous_cache_blocks);
        // Compute the explicit Q factor (which was stored
        // implicitly in A_copy and factor_output) and store in Q.
        // We don't need to un-cache-block the output, because we
        // aren't verifying it here.
        actor.explicit_Q (nrows, ncols, A_copy.get(), A_copy.lda(),
                          factor_output, ncols, Q.get(), Q.lda(),
                          contiguous_cache_blocks);
      }

      // Benchmark TBB-based TSQR for ntrials trials.
      //
      // Name of timer doesn't matter here; we only need the timing.
      timer_type timer("TbbTsqr");
      timer.start();
      for (int trial_num = 0; trial_num < ntrials; ++trial_num) {
        // Factor the matrix in-place in A_copy, and extract the
        // resulting R factor into R.
        typedef typename node_tsqr_type::FactorOutput factor_output_type;
        factor_output_type factor_output =
          actor.factor (nrows, ncols, A_copy.get(), A_copy.lda(),
                        R.get(), R.lda(), contiguous_cache_blocks);
        // Compute the explicit Q factor (which was stored
        // implicitly in A_copy and factor_output) and store in Q.
        // We don't need to un-cache-block the output, because we
        // aren't verifying it here.
        actor.explicit_Q (nrows, ncols, A_copy.get(), A_copy.lda(),
                          factor_output, ncols, Q.get(), Q.lda(),
                          contiguous_cache_blocks);
      }
      const double tbb_tsqr_timing = timer.stop();

      // Print the results
      if (human_readable) {
        cout << "(Intel TBB / cache-blocked) TSQR cumulative timings:" << endl
             << "Scalar type: " << scalarTypeName << endl
             << "# rows: " << nrows << endl
             << "# columns: " << ncols << endl
             << "# cores: " << num_cores << endl
             << "Cache size hint in bytes: " << actor.cache_size_hint() << endl
             << "Contiguous cache blocks? " << contiguous_cache_blocks << endl
             << "# trials: " << ntrials << endl
             << "Total time (s) = " << tbb_tsqr_timing << endl
             << "Total time (s) in factor() (min over all tasks): "
             << (ntrials * actor.min_seq_factor_timing()) << endl
             << "Total time (s) in factor() (max over all tasks): "
             << (ntrials * actor.max_seq_factor_timing()) << endl
             << "Total time (s) in apply() (min over all tasks): "
             << (ntrials * actor.min_seq_apply_timing()) << endl
             << "Total time (s) in apply() (max over all tasks): "
             << (ntrials * actor.max_seq_apply_timing()) << endl
             << endl << endl;
        cout << "(Intel TBB / cache-blocked) TSQR per-invocation timings:" << endl;

        std::vector<TimeStats> stats;
        actor.getStats (stats);
        std::vector<std::string> labels;
        actor.getStatsLabels (labels);

        const std::string labelLabel ("label");
        for (std::vector<std::string>::size_type k = 0; k < labels.size(); ++k) {
          const bool printHeaders = (k == 0);
          if (stats[k].count() > 0)
            stats[k].print (cout, human_readable, labels[k], labelLabel, printHeaders);
        }
      }
      else {
        if (printFieldNames) {
          const char prefix[] = "%";
          cout << prefix
               << "method"
               << ",scalarType"
               << ",numRows"
               << ",numCols"
               << ",numThreads"
               << ",cacheSizeHint"
               << ",contiguousCacheBlocks"
               << ",numTrials"
               << ",timing"
               << endl;
        }

        // We don't include {min,max}_seq_apply_timing() here, because
        // those times don't benefit from the accuracy of benchmarking
        // for ntrials > 1.  Thus, it's misleading to include them
        // with tbb_tsqr_timing, the total time over ntrials trials.
        cout << "TbbTsqr"
             << "," << scalarTypeName
             << "," << nrows
             << "," << ncols
             << "," << num_cores
             << "," << actor.cache_size_hint()
             << "," << contiguous_cache_blocks
             << "," << ntrials
             << "," << tbb_tsqr_timing
             << endl;
      }
    }
  } // namespace Test
} // namespace TSQR

#endif // __TSQR_Test_TbbTest_hpp