This file is indexed.

/usr/include/trilinos/Zoltan2_APFMeshAdapter.hpp is in libtrilinos-zoltan2-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
// @HEADER
//
// ***********************************************************************
//
//   Zoltan2: A package of combinatorial algorithms for scientific computing
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine      (kddevin@sandia.gov)
//                    Erik Boman        (egboman@sandia.gov)
//                    Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER

/*! \file Zoltan2_APFMeshAdapter.hpp
    \brief Defines the APFMeshAdapter class.
*/

#ifndef _ZOLTAN2_APFMESHADAPTER_HPP_
#define _ZOLTAN2_APFMESHADAPTER_HPP_

#include <Zoltan2_MeshAdapter.hpp>
#include <Zoltan2_StridedData.hpp>
#include <map>
#include <unordered_map>
#include <vector>
#include <string>
#include <cassert>

#ifndef HAVE_ZOLTAN2_PARMA

namespace apf {
  class Mesh;
}
namespace Zoltan2 {
template <typename User>
class APFMeshAdapter : public MeshAdapter<User>
{
public:
  
  
  APFMeshAdapter(const Comm<int> &comm, apf::Mesh* m,std::string primary,std::string adjacency,bool needSecondAdj=false)
  {
    throw std::runtime_error(
          "BUILD ERROR:  ParMA requested but not compiled into Zoltan2.\n"
          "Please set CMake flag Trilinos_ENABLE_SCOREC:BOOL=ON.");
  }
};
}
#endif

#ifdef HAVE_ZOLTAN2_PARMA

#include <apfMesh.h>
#include <apfDynamicArray.h>
#include <apfNumbering.h>
#include <apfShape.h>
#include <PCU.h>
namespace Zoltan2 {

/*! \brief This class represents a mesh.
 *
 *  A mesh can be a collection of global Identifiers
 *           and their associated weights, if any.
 *
 *  The user supplies the identifiers and weights by way of pointers
 *    to arrays.  
 *
    The template parameter (\c User) is a C++ class type which provides the
    actual data types with which the Zoltan2 library will be compiled, through
    a Traits mechanism.  \c User may be the
    actual class used by application to represent coordinates, or it may be
    the empty helper class \c BasicUserTypes with which a Zoltan2 user
    can easily supply the data types for the library.

    The \c scalar_t type, representing use data such as matrix values, is
    used by Zoltan2 for weights, coordinates, part sizes and
    quality metrics.
    Some User types (like Tpetra::CrsMatrix) have an inherent scalar type,
    and some
    (like Tpetra::CrsGraph) do not.  For such objects, the scalar type is
    set by Zoltan2 to \c float.  If you wish to change it to double, set
    the second template parameter to \c double.

 */

template <typename User>
  class APFMeshAdapter: public MeshAdapter<User> {

public:

  typedef typename InputTraits<User>::scalar_t    scalar_t;
  typedef typename InputTraits<User>::lno_t    lno_t;
  typedef typename InputTraits<User>::gno_t    gno_t;
  typedef typename InputTraits<User>::part_t   part_t;
  typedef typename InputTraits<User>::node_t   node_t;
  typedef User user_t;

  /*! \brief Constructor for mesh with an apf mesh
   *  \param m the apf Mesh
   *  \param primary the entity type for the primary target
   *  \param adjacency the entity type for the adjacency from the primary
   *  \param needSecondAdj true means the second adjacency will be computed
   *  \param needs an int 0-15 that represents the entities needed from the mesh Ex: 9 = 1001 in binary represents the need for regions and vertices
   *               
   *
   *  The values pointed to the arguments must remain valid for the
   *  lifetime of this InputAdapter.
   */

  APFMeshAdapter(const Comm<int> &comm, apf::Mesh* m,std::string primary,
                 std::string adjacency,bool needSecondAdj=false, int needs=0);

  void destroy();
  void print(int me,int verbosity=0);
  template <typename Adapter>
  void applyPartitioningSolution(const User &in, User *&out,
    const PartitioningSolution<Adapter> &solution) const{

    apf::Migration* plan = new apf::Migration(*out);
    const part_t* new_part_ids = solution.getPartListView();

    if ((m_dimension==3 && this->getPrimaryEntityType()==MESH_REGION) ||
        (m_dimension==2&&this->getPrimaryEntityType()==MESH_FACE)) {
      //Elements can simply be sent to the given target parts
      apf::MeshIterator* itr = (*out)->begin(m_dimension);
      apf::MeshEntity* ent;
      int i=0;
      while ((ent=(*out)->iterate(itr)))  {
        assert(new_part_ids[i]<PCU_Comm_Peers());
        plan->send(ent,new_part_ids[i]);
        i++;
      }
    }
    else {
      //For non-element entities we have to select elements based on the non-element
      // based Zoltan2 partition. We do this by sending the ith element to the part
      // that will have the most of the elements downward entities.
      int dim = entityZ2toAPF(this->getPrimaryEntityType());
      apf::MeshIterator* itr = (*out)->begin(m_dimension);
      apf::MeshEntity* ent;
      size_t i=0;
      while ((ent=(*out)->iterate(itr)))  {
        std::unordered_map<unsigned int,unsigned int> newOwners;
        apf::Downward adj;
        unsigned int max_num = 0;
        int new_part=PCU_Comm_Self();
        unsigned int num = in->getDownward(ent,dim,adj);
        for (unsigned int j=0;j<num;j++) {
          gno_t gid = apf::getNumber(gids[dim],apf::Node(adj[j],0));
          lno_t lid = apf::getNumber(lids[dim],adj[j],0,0);
          newOwners[new_part_ids[lid]]++;
          if (newOwners[new_part_ids[lid]]>max_num) {
            max_num=newOwners[new_part_ids[lid]];
            new_part = new_part_ids[lid];
          }
        }
        if (max_num>1)
          if (new_part<0||new_part>=PCU_Comm_Peers()) {
            std::cout<<new_part<<std::endl;
            throw std::runtime_error("Target part is out of bounds\n");
          }
          plan->send(ent,new_part);
        i++;
      }
      
    }
    (*out)->migrate(plan);
  }

  ////////////////////////////////////////////////////////////////
  // The MeshAdapter interface.
  // This is the interface that would be called by a model or a problem .
  ////////////////////////////////////////////////////////////////

  /* NOTE: Only elements are uniquely provided from the APF Mesh Adapter.
     All other elements have copies across the shared parts
     These copies can be joined by the sharing of a unique global id
     getGlobalNumOf(type) != Sum(getLocalNumOf(type))
  */
  bool areEntityIDsUnique(MeshEntityType etype) const {
    int dim = entityZ2toAPF(etype);
    return dim==m_dimension;
  }
  size_t getLocalNumOf(MeshEntityType etype) const
  {
    int dim = entityZ2toAPF(etype);
    if (dim<=m_dimension&&dim>=0)
      return num_local[dim];
    return 0;
  }
   
  void getIDsViewOf(MeshEntityType etype, const gno_t *&Ids) const
  {
    int dim = entityZ2toAPF(etype);
    if (dim<=m_dimension&&dim>=0)
      Ids = gid_mapping[dim];
    else
      Ids = NULL;
  }

  void getTopologyViewOf(MeshEntityType etype,
                         enum EntityTopologyType const *&Types) const {
    int dim = entityZ2toAPF(etype);
    if (dim<=m_dimension&&dim>=0)
      Types = topologies[dim];
    else
      Types = NULL;
  }

  int getNumWeightsPerOf(MeshEntityType etype) const {
    int dim = entityZ2toAPF(etype);
    return static_cast<int>(weights[dim].size());
}

  void getWeightsViewOf(MeshEntityType etype, const scalar_t *&ws,
                        int &stride, int idx = 0) const
  {
    int dim = entityZ2toAPF(etype);
    typename map_array_t::iterator itr = weights[dim].find(idx);
    if (itr!=weights[dim].end()) {
      ws = &(*(itr->second.first));
      stride = itr->second.second;
    }
    else {
      ws = NULL;
      stride = 0;
    }
  }

  int getDimension() const { return coord_dimension; }

  void getCoordinatesViewOf(MeshEntityType etype, const scalar_t *&coords,
                            int &stride, int coordDim) const {
    if (coordDim>=0 && coordDim<3) {
      int dim = entityZ2toAPF(etype);
      if (dim<=m_dimension&&dim>=0) {
        coords = ent_coords[dim]+coordDim;
        stride = 3;
      }
      else {
        coords = NULL;
        stride = 0;
      }
    }
    else {
      coords = NULL;
      stride = 0;
    }
  }

  bool availAdjs(MeshEntityType source, MeshEntityType target) const {
    int dim_source = entityZ2toAPF(source);
    int dim_target = entityZ2toAPF(target);
    return dim_source<=m_dimension && dim_source>=0 &&
      dim_target<=m_dimension && dim_target>=0 &&
      dim_target!=dim_source&&
      has(dim_source) && has(dim_target);
  }

  size_t getLocalNumAdjs(MeshEntityType source, MeshEntityType target) const
  {
    int dim_source = entityZ2toAPF(source);
    int dim_target = entityZ2toAPF(target);
    if (availAdjs(source,target)) 
      return adj_gids[dim_source][dim_target].size();
    return 0;
  }

  void getAdjsView(MeshEntityType source, MeshEntityType target,
		   const lno_t *&offsets, const gno_t *& adjacencyIds) const
  {
    int dim_source = entityZ2toAPF(source);
    int dim_target = entityZ2toAPF(target);
    if (availAdjs(source,target)) {
      offsets = adj_offsets[dim_source][dim_target];
      adjacencyIds = &(adj_gids[dim_source][dim_target][0]);
    } 
    else {
      offsets=NULL;
      adjacencyIds = NULL;
    }
  }
  //TODO:: some pairings of the second adjacencies do not include off processor adjacencies.
  // one such pairing is the edge through vertex second adjacnecies. 
  //#define USE_MESH_ADAPTER
#ifndef USE_MESH_ADAPTER
  bool avail2ndAdjs(MeshEntityType sourcetarget, MeshEntityType through) const
  {
    if (adj2_gids==NULL)
      return false;
    int dim_source = entityZ2toAPF(sourcetarget);
    int dim_target = entityZ2toAPF(through);
    if (dim_source==1&&dim_target==0)
      return false;
    return dim_source<=m_dimension && dim_source>=0 &&
      dim_target<=m_dimension && dim_target>=0 &&
      dim_target!=dim_source &&
      has(dim_source)&&has(dim_target);
  }

  size_t getLocalNum2ndAdjs(MeshEntityType sourcetarget, 
			    MeshEntityType through) const
  {
    int dim_source = entityZ2toAPF(sourcetarget);
    int dim_target = entityZ2toAPF(through);
    if (avail2ndAdjs(sourcetarget,through)) 
      return adj2_gids[dim_source][dim_target].size();
    return 0;

  }

  void get2ndAdjsView(MeshEntityType sourcetarget, MeshEntityType through, 
		      const lno_t *&offsets, const gno_t *&adjacencyIds) const
  {
    int dim_source = entityZ2toAPF(sourcetarget);
    int dim_target = entityZ2toAPF(through);
    if (avail2ndAdjs(sourcetarget,through)) {
      offsets=adj2_offsets[dim_source][dim_target];
      adjacencyIds=&(adj2_gids[dim_source][dim_target][0]);
    }
    
  }
#endif

  /*! \brief Provide a pointer to weights for the etype entity type.
   *    \param etype the entity type to assign the weights to
   *    \param val A pointer to the weights for index \c idx.
   *    \param stride    A stride for the \c val array.  If \stride is
   *             \c k, then val[n * k] is the weight for the
   *             \c n th entity for index \idx.
   *    \param idx A number from 0 to one less than 
   *          weight idx specified in the constructor.
   *
   *  The order of the weights should match the order that
   *  entities appear in the input data structure.
   */

  void setWeights(MeshEntityType etype, const scalar_t *val, int stride, int idx=0);

  /*! \brief Provide an apf::MeshTag to weights for the etype entity type.
   *    \param etype the type to assign the weights to
   *    \param m the mesh
   *    \param weights the mesh tag of size n that contains the weights
   *    \param ids an array of length n that lists the ids for each set of weights in the tag If
   *               unspecified assumes the ids are 0 to n-1
   *
   *  Non tagged entities receive a weight of 1
   *  
   */

  void setWeights(MeshEntityType etype, apf::Mesh* m,apf::MeshTag* weights, int* ids=NULL);

private:
  /*! brief Returns true if the entities of dimension dim will be constructed in the mesh adapter
   *    \param dim the dimension
   *
   */
  bool has(int dim) const {return (entity_needs>>dim)%2;}

  // provides a conversion from the mesh entity type to the apf dimension
  int entityZ2toAPF(enum MeshEntityType etype) const {return static_cast<int>(etype);}

  // provides a conversion from the apf topology type to the Zoltan2 topology type
  enum EntityTopologyType topologyAPFtoZ2(enum apf::Mesh::Type ttype) const {
    if (ttype==apf::Mesh::VERTEX)
      return POINT;
    else if (ttype==apf::Mesh::EDGE)
      return LINE_SEGMENT;
    else if (ttype==apf::Mesh::TRIANGLE)
      return TRIANGLE;
    else if (ttype==apf::Mesh::QUAD)
      return QUADRILATERAL;
    else if (ttype==apf::Mesh::TET)
      return TETRAHEDRON;
    else if (ttype==apf::Mesh::HEX)
      return HEXAHEDRON;
    else if (ttype==apf::Mesh::PRISM)
      return PRISM;
    else if (ttype==apf::Mesh::PYRAMID)
      return PYRAMID;
    else 
      throw "No such APF topology type";
    
  }

  // provides a conversion from the mesh tag type to scalar_t since mesh tags are not templated
  void getTagWeight(apf::Mesh* m, apf::MeshTag* tag,apf::MeshEntity* ent, scalar_t* ws);


  int m_dimension;  //Dimension of the mesh

  //An int between 0 and 15 that represents the mesh dimensions that are constructed
  // in binary. A 1 in the ith digit corresponds to the ith dimension being constructed
  // Ex: 9 = 1001 is equivalent to regions and vertices are needed
  int entity_needs;
  apf::Numbering** lids; //[dimension] numbering of local id numbers
  apf::GlobalNumbering** gids;//[dimension] numbering of global id numbers
  gno_t** gid_mapping; //[dimension][lid] corresponding global id numbers
  size_t* num_local; //[dimension] number of local entities
  EntityTopologyType** topologies; //[dimension] topologies for each entity
  lno_t*** adj_offsets; //[first_dimension][second_dimension] array of offsets
  std::vector<gno_t>** adj_gids; //[first_dimension][second_dimension] global_ids of first adjacencies
  lno_t*** adj2_offsets; //[first_dimension][second_dimension] array of offsets for second adjacencies
  std::vector<gno_t>** adj2_gids; //[first_dimension][second_dimension] global_ids of second adjacencies
  int coord_dimension; //dimension of coordinates (always 3 for APF)
  scalar_t** ent_coords; //[dimension] array of coordinates [xs ys zs]

  //[dimension][id] has the start of the weights array and the stride
  typedef std::unordered_map<int, std::pair<ArrayRCP<const scalar_t>, int> > map_array_t;
  map_array_t* weights;
  
};

////////////////////////////////////////////////////////////////
// Definitions
////////////////////////////////////////////////////////////////

template <typename User>
APFMeshAdapter<User>::APFMeshAdapter(const Comm<int> &comm,
                                     apf::Mesh* m,
                                     std::string primary,
                                     std::string adjacency,
                                     bool needSecondAdj,
                                     int needs) {
  
  //get the mesh dimension
  m_dimension = m->getDimension();

  //get the dimensions that are needed to be constructed
  entity_needs = needs;

  //Make the primary and adjacency entity types
  //choices are region, face, edge, vertex
  //element is a shortcut to mean the mesh dimension entity type
  //region will throw an error on 2D meshes
  if (primary=="element") {
    if (m_dimension==2)
      primary="face";
    else
      primary="region";
  }
  if (adjacency=="element") {
    if (m_dimension==2)
      adjacency="face";
    else
      adjacency="region";
  }
  if (primary=="region"&&m_dimension<3)
    throw std::runtime_error("primary type and mesh dimension mismatch");
  if (adjacency=="region"&&m_dimension<3)
    throw std::runtime_error("adjacency type and mesh dimension mismatch");
  this->setEntityTypes(primary,adjacency,adjacency);

  //setup default needs such that primary and adjacency types are always constructed
  int dim1 = entityZ2toAPF(this->getPrimaryEntityType());
  int dim2 = entityZ2toAPF(this->getAdjacencyEntityType());
  int new_needs=0;
  new_needs+=1<<dim1;
  new_needs+=1<<dim2;
  entity_needs|=new_needs;

  //count the local and global numbers as well as assign ids and map local to global
  lids = new apf::Numbering*[m_dimension+1];
  gids = new apf::GlobalNumbering*[m_dimension+1];
  gid_mapping = new gno_t*[m_dimension+1];
  std::unordered_map<gno_t,lno_t>* lid_mapping = new std::unordered_map<gno_t,lno_t>[m_dimension+1];
  num_local = new size_t[m_dimension+1];
  topologies = new EntityTopologyType*[m_dimension+1];
  
  for (int i=0;i<=m_dimension;i++) {  
    num_local[i]=0;
    
    topologies[i] = NULL;
    gid_mapping[i] = NULL;
    if (!has(i))
      continue;
    //number of local and global entities
    num_local[i] = m->count(i);
    long global_count = countOwned(m,i);
    PCU_Add_Longs(&global_count,1);

    
    //Number each entity with local and global numbers
    char lids_name[15];
    sprintf(lids_name,"lids%d",i);
    char gids_name[15];
    sprintf(gids_name,"ids%d",i);
    apf::FieldShape* shape = apf::getConstant(i);
    lids[i] = apf::createNumbering(m,lids_name,shape,1);
    apf::Numbering* tmp = apf::numberOwnedDimension(m,gids_name,i);
    gids[i] = apf::makeGlobal(tmp);
    apf::synchronize(gids[i]);
    apf::MeshIterator* itr = m->begin(i);
    apf::MeshEntity* ent;
    unsigned int num=0;
    while ((ent=m->iterate(itr))) {
      apf::number(lids[i],ent,0,0,num); 
      lid_mapping[i][apf::getNumber(gids[i],apf::Node(ent,0))]=num;
      num++;
    }
    m->end(itr);
    assert(num==num_local[i]);
    
    //Make a mapping from local to global
    //While we are at it take the topology types
    gid_mapping[i] = new gno_t[num_local[i]];
    topologies[i] = new EntityTopologyType[num_local[i]];
    apf::DynamicArray<apf::Node> nodes;
    itr = m->begin(i);
    num=0;
    while((ent=m->iterate(itr)))  {
      gno_t gid = apf::getNumber(gids[i],apf::Node(ent,0));
      gid_mapping[i][ apf::getNumber(lids[i],ent,0,0)] = gid;
      topologies[i][num] = topologyAPFtoZ2(m->getType(ent));
      num++;
    }
    m->end(itr);
   
    
  }
  //First Adjacency and Second Adjacency data
  adj_gids = new std::vector<gno_t>*[m_dimension+1];
  adj_offsets = new lno_t**[m_dimension+1];
  if (needSecondAdj) {
    adj2_gids = new std::vector<gno_t>*[m_dimension+1];
    adj2_offsets = new lno_t**[m_dimension+1];
  }
  else {
    adj2_gids=NULL;
    adj2_offsets=NULL;
  }
  for (int i=0;i<=m_dimension;i++) {
    adj_gids[i]=NULL;
    adj_offsets[i]=NULL;
    if (needSecondAdj) {
      adj2_gids[i]=NULL;
      adj2_offsets[i]=NULL;
    }
    if (!has(i))
      continue;
    adj_gids[i] = new std::vector<gno_t>[m_dimension+1];
    adj_offsets[i] = new lno_t*[m_dimension+1];
    if (needSecondAdj) {
      adj2_gids[i] = new std::vector<gno_t>[m_dimension+1];
      adj2_offsets[i] = new lno_t*[m_dimension+1];
    }
    for (int j=0;j<=m_dimension;j++) {
      
      if (i==j||!has(j)) {
        adj_offsets[i][j]=NULL;
        if (needSecondAdj)
          adj2_offsets[i][j]=NULL;
        continue;
      }
      
      //Loop through each entity
      apf::MeshIterator* itr = m->begin(i);
      apf::MeshEntity* ent;
      
      adj_offsets[i][j] = new lno_t[num_local[i]+1];
      adj_offsets[i][j][0] =0;
      if (needSecondAdj) {
        adj2_offsets[i][j] = new lno_t[num_local[i]+1];
        adj2_offsets[i][j][0] =0;
      }
      int k=1;
      
      //We need communication for second adjacency
      if (needSecondAdj)
        PCU_Comm_Begin();
      std::unordered_map<gno_t,apf::MeshEntity*> part_boundary_mapping;
      
      while ((ent=m->iterate(itr))) {
        std::set<gno_t> temp_adjs; //temp storage for second adjacency
        //Get First Adjacency
        apf::Adjacent adj;
        m->getAdjacent(ent,j,adj);
        for (unsigned int l=0;l<adj.getSize();l++) {
          adj_gids[i][j].push_back(apf::getNumber(gids[j],apf::Node(adj[l],0)));
          //Now look at Second Adjacency
          if (needSecondAdj) {
            apf::Adjacent adj2;
            m->getAdjacent(adj[l],i,adj2);
            for (unsigned int o=0;o<adj2.getSize();o++)
              temp_adjs.insert(apf::getNumber(gids[i],apf::Node(adj2[o],0)));
            if (i==m_dimension) {
              apf::Parts res;
              m->getResidence(adj[l],res);
              
              part_boundary_mapping[apf::getNumber(gids[j],apf::Node(adj[l],0))] = adj[l];
              for (apf::Parts::iterator it=res.begin();it!=res.end();it++) {
                gno_t send_vals[2];
                send_vals[1]=apf::getNumber(gids[i],apf::Node(ent,0));
                send_vals[0]=apf::getNumber(gids[j],apf::Node(adj[l],0));
                
                PCU_Comm_Pack(*it,send_vals,2*sizeof(gno_t));
              }
            }
          }
        }
        adj_offsets[i][j][k] = adj_gids[i][j].size();
        k++;
        //Copy over local second adjacencies to copies
	if (needSecondAdj && i!=m_dimension) {
	  apf::Parts res;
	  m->getResidence(ent,res);
	  typename std::set<gno_t>::iterator adj_itr;
	  for (adj_itr=temp_adjs.begin();adj_itr!=temp_adjs.end();adj_itr++) {
	    for (apf::Parts::iterator it=res.begin();it!=res.end();it++) {
	      gno_t send_vals[2];
	      send_vals[0]=apf::getNumber(gids[i],apf::Node(ent,0));
	      send_vals[1] = *adj_itr;
	      if (send_vals[0]!=send_vals[1])
		PCU_Comm_Pack(*it,send_vals,2*sizeof(gno_t));
	    }
          }
        }
      }
      m->end(itr);
      if (needSecondAdj) {
        //Now capture mesh wide second adjacency locally
        PCU_Comm_Send();
        std::set<gno_t>* adjs2 = new std::set<gno_t>[num_local[i]];
        while (PCU_Comm_Receive()) {
          gno_t adj2[2];
          PCU_Comm_Unpack(adj2,2*sizeof(gno_t));
          
          if (i==m_dimension) {
            apf::MeshEntity* through = part_boundary_mapping[adj2[0]];
            apf::Adjacent adj;
            m->getAdjacent(through,i,adj);
            for (unsigned int l=0;l<adj.getSize();l++) {
              if (apf::getNumber(gids[i],apf::Node(adj[l],0))!=adj2[1])
                adjs2[apf::getNumber(lids[i],adj[l],0,0)].insert(adj2[1]);
            }
          }
          else {
            lno_t index = lid_mapping[i][adj2[0]];
            adjs2[index].insert(adj2[1]);
          }
        }      
        //And finally convert the second adjacency to a vector to be returned to user
        for (size_t l=0;l<num_local[i];l++) {
          for (typename std::set<gno_t>::iterator sitr = adjs2[l].begin();sitr!=adjs2[l].end();sitr++) {
            adj2_gids[i][j].push_back(*sitr);
          }
          adj2_offsets[i][j][l+1]=adj2_gids[i][j].size();
        }
      }
    }
  }
  //Coordinates
  coord_dimension = 3;
  ent_coords = new scalar_t*[m_dimension+1];
  for (int i=0;i<=m_dimension;i++) {
    ent_coords[i] = NULL;
    if (!has(i))
      continue;
    apf::MeshIterator* itr = m->begin(i);
    apf::MeshEntity* ent;
    ent_coords[i] = new scalar_t[3*num_local[i]];
    int j=0;
    while((ent=m->iterate(itr))) {
      apf::Vector3 point;
      if (i==0) {
        m->getPoint(ent,0,point);
      }
      else {
        point = apf::getLinearCentroid(m,ent);
      }
      for (int k=0;k<3;k++)  
        ent_coords[i][j*3+k] = point[k];
      j++;
    }
    m->end(itr);
  }

  //Just make the weights array with nothing in it for now
  //It will be filled by calls to setWeights(...)
  weights = new map_array_t[m_dimension+1];

  //cleanup
  delete [] lid_mapping;
}
template <typename User>
void APFMeshAdapter<User>::destroy() {
  //So that we can't destory the adapter twice
  if (m_dimension==-1)
    return;
  for (int i=0;i<=m_dimension;i++) {
    if (!has(i))
      continue;
    delete [] ent_coords[i];
    delete [] adj_gids[i];
    if (adj2_gids)
      delete [] adj2_gids[i];
    for (int j=0;j<=m_dimension;j++) {
      if (!has(j))
        continue;
      if (i!=j) {
        delete [] adj_offsets[i][j];
        if (adj2_gids)
          delete [] adj2_offsets[i][j];
      }
    }
    if (adj2_gids)
      delete [] adj2_offsets[i];
    delete [] adj_offsets[i];
    delete [] gid_mapping[i];
    apf::destroyGlobalNumbering(gids[i]);
    apf::destroyNumbering(lids[i]);
  }
  delete [] ent_coords;
  delete [] adj_gids;
  delete [] adj_offsets;
  if (adj2_gids) {
    delete [] adj2_gids;
    delete [] adj2_offsets;
  }
  delete [] gid_mapping;
  delete [] gids;
  delete [] lids;
  delete [] num_local;
  delete [] weights;
  //Set the mesh dimension to -1 so that no operations can be done on the destroyed adapter
  m_dimension=-1;
}  

template <typename User>
void APFMeshAdapter<User>::setWeights(MeshEntityType etype, const scalar_t *val, int stride, int idx) {
  int dim = entityZ2toAPF(etype);
  if (dim>m_dimension||!has(dim)) {
    throw std::runtime_error("Cannot add weights to non existing dimension");
  }
  ArrayRCP<const scalar_t> weight_rcp(val,0,stride*getLocalNumOf(etype),false);
  weights[dim][idx] =std::make_pair(weight_rcp,stride);
}

//Simple helper function to convert the tag type to the scalar_t type
template <typename User>
void APFMeshAdapter<User>::getTagWeight(apf::Mesh* m, 
                                        apf::MeshTag* tag,
                                        apf::MeshEntity* ent,
                                        scalar_t* ws) {
  int size = m->getTagSize(tag);
  int type = m->getTagType(tag);
  if (type==apf::Mesh::DOUBLE)  {
    double* w = new double[size];
    m->getDoubleTag(ent,tag,w);
    for (int i=0;i<size;i++) 
      ws[i] = static_cast<scalar_t>(w[i]);
    delete [] w;
  }
  else if (type==apf::Mesh::INT)  {
    int* w = new int[size];
    m->getIntTag(ent,tag,w);
    for (int i=0;i<size;i++) 
      ws[i] = static_cast<scalar_t>(w[i]);
    delete [] w;
  }
  else if (type==apf::Mesh::LONG)  {
    long* w = new long[size];
    m->getLongTag(ent,tag,w);
    for (int i=0;i<size;i++) 
      ws[i] = static_cast<scalar_t>(w[i]);
    delete [] w;
  }
  else {
    throw std::runtime_error("Unrecognized tag type");
  }
}

template <typename User>
void APFMeshAdapter<User>::setWeights(MeshEntityType etype, apf::Mesh* m,apf::MeshTag* tag, int* ids) {
  int dim = entityZ2toAPF(etype);
  if (dim>m_dimension||!has(dim)) {
    throw std::runtime_error("Cannot add weights to non existing dimension");
  }
  int n_weights = m->getTagSize(tag);
  bool delete_ids = false;
  if (ids==NULL) {
    ids = new int[n_weights];
    delete_ids=true;
    for (int i=0;i<n_weights;i++)
      ids[i] = i;
  }
  scalar_t* ones = new scalar_t[n_weights];
  for (int i=0;i<n_weights;i++)
    ones[i] = 1;
  
  scalar_t* ws = new scalar_t[num_local[dim]*n_weights];
  apf::MeshIterator* itr = m->begin(dim);
  apf::MeshEntity* ent;
  int  j=0;
  while ((ent=m->iterate(itr))) {
    scalar_t* w;
    if (m->hasTag(ent,tag))  {
      w = new scalar_t[n_weights];
      getTagWeight(m,tag,ent,w);
    }
    else
      w = ones;
    
    for (int i=0;i<n_weights;i++) {
      ws[i*getLocalNumOf(etype)+j] = w[i];
    }
    j++;

    if (m->hasTag(ent,tag)) 
      delete [] w;
  }
  for (int i=0;i<n_weights;i++) {
    ArrayRCP<const scalar_t> weight_rcp(ws+i*getLocalNumOf(etype),0,getLocalNumOf(etype),i==0);
    weights[dim][ids[i]] =std::make_pair(weight_rcp,1);
  }

  if (delete_ids)
    delete [] ids;
  delete [] ones;
}

template <typename User>
void APFMeshAdapter<User>::print(int me,int verbosity)
{
  if (m_dimension==-1) {
    std::cout<<"Cannot print destroyed mesh adapter\n";
    return;
  }
  
  std::string fn(" APFMesh ");
  std::cout << me << fn 
            << " dimension = " << m_dimension
            << std::endl;
  if (verbosity==0)
    return;
  for (int i=0;i<=m_dimension;i++) {
    if (!has(i))
      continue;
    std::cout<<me<<" Number of dimension " << i<< " = " <<num_local[i] <<std::endl;
    if (verbosity>=1) { 
      for (size_t j=0;j<num_local[i];j++) {
        std::cout<<"   Entity "<<gid_mapping[i][j]<<"("<<j<<"):\n";
        for (int k=0;k<=m_dimension;k++) {
          if (!has(k))
            continue;
          if (k==i)
            continue;
          std::cout<<"     First Adjacency of Dimension "<<k<<":";
          for (lno_t l=adj_offsets[i][k][j];l<adj_offsets[i][k][j+1];l++)
            std::cout<<" "<<adj_gids[i][k][l];
          std::cout<<"\n";
          if (verbosity>=3) {
            std::cout<<"     Second Adjacency through Dimension "<<k<<":";
            for (lno_t l=adj2_offsets[i][k][j];l<adj2_offsets[i][k][j+1];l++)
              std::cout<<" "<<adj2_gids[i][k][l];
            std::cout<<"\n";
          }
        }
      }
    }
  }
}

 

}  //namespace Zoltan2

#endif //HAVE_ZOLTAN2_PARMA
    
#endif