/usr/include/trilinos/Zoltan2_AlgParMA.hpp is in libtrilinos-zoltan2-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 | // @HEADER
//
// ***********************************************************************
//
// Zoltan2: A package of combinatorial algorithms for scientific computing
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine (kddevin@sandia.gov)
// Erik Boman (egboman@sandia.gov)
// Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
#ifndef _ZOLTAN2_ALGPARMA_HPP_
#define _ZOLTAN2_ALGPARMA_HPP_
#include <Zoltan2_Algorithm.hpp>
#include <Zoltan2_PartitioningSolution.hpp>
#include <Zoltan2_Util.hpp>
#include <Zoltan2_TPLTraits.hpp>
//////////////////////////////////////////////////////////////////////////////
//! \file Zoltan2_AlgParMA.hpp
//! \brief interface to the ParMA library
//
// This design creates an apf mesh to run the ParMA algorithms on. The
// final solution is determined by changes from beginning to end of the mesh.
// This approach allows development closer to that of PUMI setup but at the
// cost of creating an extra mesh representation.
//
// Available ParMA algorithms are given by setting the parma_method parameter
// of the sublist parma_paramaters to one of the following:
// Vertex - Balances targeting vertex imbalance
// Element - Balances targeting element imbalance
// VtxElm - Balances targeting vertex and element imbalance
// VtxEdgeElm - Balances targeting vertex, edge, and element imbalance
// Ghost - Balances using ghost element aware diffusion
// Shape - Optimizes shape of parts by increasing the size of small part boundaries
// Centroid - Balances using centroid diffusion
//////////////////////////////////////////////////////////////////////////////
#ifndef HAVE_ZOLTAN2_PARMA
// Error handling for when ParMA is requested
// but Zoltan2 not built with ParMA.
namespace Zoltan2 {
template <typename Adapter>
class AlgParMA : public Algorithm<Adapter>
{
public:
typedef typename Adapter::user_t user_t;
AlgParMA(const RCP<const Environment> &env,
const RCP<const Comm<int> > &problemComm,
const RCP<const BaseAdapter<user_t> > &adapter)
{
throw std::runtime_error(
"BUILD ERROR: ParMA requested but not compiled into Zoltan2.\n"
"Please set CMake flag Zoltan2_ENABLE_ParMA:BOOL=ON.");
}
};
}
#endif
#ifdef HAVE_ZOLTAN2_PARMA
#include <apf.h>
#include <gmi_null.h>
#include <apfMDS.h>
#include <apfMesh2.h>
#include <apfNumbering.h>
#include <PCU.h>
#include <parma.h>
#include <apfConvert.h>
#include <apfShape.h>
#include <map>
#include <cassert>
namespace Zoltan2 {
template <typename Adapter>
class AlgParMA : public Algorithm<Adapter>
{
private:
typedef typename Adapter::lno_t lno_t;
typedef typename Adapter::gno_t gno_t;
typedef typename Adapter::scalar_t scalar_t;
typedef typename Adapter::part_t part_t;
typedef typename Adapter::user_t user_t;
typedef typename Adapter::userCoord_t userCoord_t;
const RCP<const Environment> env;
const RCP<const Comm<int> > problemComm;
const RCP<const MeshAdapter<user_t> > adapter;
apf::Mesh2* m;
apf::Numbering* gids;
apf::Numbering* origin_part_ids;
std::map<gno_t, lno_t> mapping_elm_gids_index;
MPI_Comm mpicomm;
bool pcu_outside;
void setMPIComm(const RCP<const Comm<int> > &problemComm__) {
# ifdef HAVE_ZOLTAN2_MPI
mpicomm = Teuchos::getRawMpiComm(*problemComm__);
# else
mpicomm = MPI_COMM_WORLD; // taken from siMPI
# endif
}
// provides conversion from an APF entity dimension to a Zoltan2 entity type
enum MeshEntityType entityAPFtoZ2(int dimension) const {return static_cast<MeshEntityType>(dimension);}
//provides a conversion from the Zoltan2 topology type to and APF type
// throws an error on topology types not supported by APF
enum apf::Mesh::Type topologyZ2toAPF(enum EntityTopologyType ttype) const {
if (ttype==POINT)
return apf::Mesh::VERTEX;
else if (ttype==LINE_SEGMENT)
return apf::Mesh::EDGE;
else if (ttype==TRIANGLE)
return apf::Mesh::TRIANGLE;
else if (ttype==QUADRILATERAL)
return apf::Mesh::QUAD;
else if (ttype==TETRAHEDRON)
return apf::Mesh::TET;
else if (ttype==HEXAHEDRON)
return apf::Mesh::HEX;
else if (ttype==PRISM)
return apf::Mesh::PRISM;
else if (ttype==PYRAMID)
return apf::Mesh::PYRAMID;
else
throw std::runtime_error("APF does not support this topology type");
}
//Sets the weights of each entity in dimension 'dim' to those provided by the mesh adapter
//sets all weights in the mesh adapter but currently only one is considered by ParMA
void setEntWeights(int dim, apf::MeshTag* tag) {
MeshEntityType etype = entityAPFtoZ2(dim);
for (int i=0;i<m->getTagSize(tag);i++) {
apf::MeshIterator* itr = m->begin(dim);
apf::MeshEntity* ent;
const scalar_t* ws=NULL;
int stride;
if (i<adapter->getNumWeightsPerOf(etype))
adapter->getWeightsViewOf(etype,ws,stride,i);
int j=0;
while ((ent= m->iterate(itr))) {
double w = 1.0;
if (ws!=NULL)
w = static_cast<double>(ws[j]);
m->setDoubleTag(ent,tag,&w);
j++;
}
m->end(itr);
}
}
//Helper function to set the weights of each dimension needed by the specific parma algorithm
apf::MeshTag* setWeights(bool vtx, bool edge, bool face, bool elm) {
int num_ws=1;
if (vtx)
num_ws = std::max(num_ws,adapter->getNumWeightsPerOf(MESH_VERTEX));
if (edge)
num_ws = std::max(num_ws,adapter->getNumWeightsPerOf(MESH_EDGE));
if (face)
num_ws = std::max(num_ws,adapter->getNumWeightsPerOf(MESH_FACE));
if (elm)
num_ws = std::max(num_ws,adapter->getNumWeightsPerOf(entityAPFtoZ2(m->getDimension())));
apf::MeshTag* tag = m->createDoubleTag("parma_weight",num_ws);
if (vtx)
setEntWeights(0,tag);
if (edge)
setEntWeights(1,tag);
if (face)
setEntWeights(2,tag);
if (elm) {
setEntWeights(m->getDimension(),tag);
}
return tag;
}
//APF Mesh construction helper functions modified and placed here to support arbitrary entity types
void constructElements(const gno_t* conn, lno_t nelem, const lno_t* offsets,
const EntityTopologyType* tops, apf::GlobalToVert& globalToVert)
{
apf::ModelEntity* interior = m->findModelEntity(m->getDimension(), 0);
for (lno_t i = 0; i < nelem; ++i) {
apf::Mesh::Type etype = topologyZ2toAPF(tops[i]);
apf::Downward verts;
for (int j = offsets[i]; j < offsets[i+1]; ++j)
verts[j-offsets[i]] = globalToVert[conn[j]];
buildElement(m, interior, etype, verts);
}
}
int getMax(const apf::GlobalToVert& globalToVert)
{
int max = -1;
APF_CONST_ITERATE(apf::GlobalToVert, globalToVert, it)
max = std::max(max, it->first);
PCU_Max_Ints(&max, 1); // this is type-dependent
return max;
}
void constructResidence(apf::GlobalToVert& globalToVert)
{
int max = getMax(globalToVert);
int total = max + 1;
int peers = PCU_Comm_Peers();
int quotient = total / peers;
int remainder = total % peers;
int mySize = quotient;
int self = PCU_Comm_Self();
if (self == (peers - 1))
mySize += remainder;
typedef std::vector< std::vector<int> > TmpParts;
TmpParts tmpParts(mySize);
/* if we have a vertex, send its global id to the
broker for that global id */
PCU_Comm_Begin();
APF_ITERATE(apf::GlobalToVert, globalToVert, it) {
int gid = it->first;
int to = std::min(peers - 1, gid / quotient);
PCU_COMM_PACK(to, gid);
}
PCU_Comm_Send();
int myOffset = self * quotient;
/* brokers store all the part ids that sent messages
for each global id */
while (PCU_Comm_Receive()) {
int gid;
PCU_COMM_UNPACK(gid);
int from = PCU_Comm_Sender();
tmpParts.at(gid - myOffset).push_back(from);
}
/* for each global id, send all associated part ids
to all associated parts */
PCU_Comm_Begin();
for (int i = 0; i < mySize; ++i) {
std::vector<int>& parts = tmpParts[i];
for (size_t j = 0; j < parts.size(); ++j) {
int to = parts[j];
int gid = i + myOffset;
int nparts = parts.size();
PCU_COMM_PACK(to, gid);
PCU_COMM_PACK(to, nparts);
for (size_t k = 0; k < parts.size(); ++k)
PCU_COMM_PACK(to, parts[k]);
}
}
PCU_Comm_Send();
/* receiving a global id and associated parts,
lookup the vertex and classify it on the partition
model entity for that set of parts */
while (PCU_Comm_Receive()) {
int gid;
PCU_COMM_UNPACK(gid);
int nparts;
PCU_COMM_UNPACK(nparts);
apf::Parts residence;
for (int i = 0; i < nparts; ++i) {
int part;
PCU_COMM_UNPACK(part);
residence.insert(part);
}
apf::MeshEntity* vert = globalToVert[gid];
m->setResidence(vert, residence);
}
}
/* given correct residence from the above algorithm,
negotiate remote copies by exchanging (gid,pointer)
pairs with parts in the residence of the vertex */
void constructRemotes(apf::GlobalToVert& globalToVert)
{
int self = PCU_Comm_Self();
PCU_Comm_Begin();
APF_ITERATE(apf::GlobalToVert, globalToVert, it) {
int gid = it->first;
apf::MeshEntity* vert = it->second;
apf::Parts residence;
m->getResidence(vert, residence);
APF_ITERATE(apf::Parts, residence, rit)
if (*rit != self) {
PCU_COMM_PACK(*rit, gid);
PCU_COMM_PACK(*rit, vert);
}
}
PCU_Comm_Send();
while (PCU_Comm_Receive()) {
int gid;
PCU_COMM_UNPACK(gid);
apf::MeshEntity* remote;
PCU_COMM_UNPACK(remote);
int from = PCU_Comm_Sender();
apf::MeshEntity* vert = globalToVert[gid];
m->addRemote(vert, from, remote);
}
}
public:
/*! ParMA constructor
* \param env parameters for the problem and library configuration
* \param problemComm the communicator for the problem
* \param adapter the user's input adapter (MeshAdapter)
*/
AlgParMA(const RCP<const Environment> &env__,
const RCP<const Comm<int> > &problemComm__,
const RCP<const IdentifierAdapter<user_t> > &adapter__)
{
throw std::runtime_error("ParMA needs a MeshAdapter but you haven't given it one");
}
AlgParMA(const RCP<const Environment> &env__,
const RCP<const Comm<int> > &problemComm__,
const RCP<const VectorAdapter<user_t> > &adapter__)
{
throw std::runtime_error("ParMA needs a MeshAdapter but you haven't given it one");
}
AlgParMA(const RCP<const Environment> &env__,
const RCP<const Comm<int> > &problemComm__,
const RCP<const GraphAdapter<user_t,userCoord_t> > &adapter__)
{
throw std::runtime_error("ParMA needs a MeshAdapter but you haven't given it one");
}
AlgParMA(const RCP<const Environment> &env__,
const RCP<const Comm<int> > &problemComm__,
const RCP<const MatrixAdapter<user_t,userCoord_t> > &adapter__)
{
throw std::runtime_error("ParMA needs a MeshAdapter but you haven't given it one");
}
AlgParMA(const RCP<const Environment> &env__,
const RCP<const Comm<int> > &problemComm__,
const RCP<const MeshAdapter<user_t> > &adapter__) :
env(env__), problemComm(problemComm__), adapter(adapter__)
{
setMPIComm(problemComm__);
//Setup PCU communications
//If PCU was already initialized outside (EX: for the APFMeshAdapter)
// we don't initialize it again.
pcu_outside=false;
if (!PCU_Comm_Initialized())
PCU_Comm_Init();
else
pcu_outside=true;
PCU_Switch_Comm(mpicomm);
//Find the mesh dimension based on if there are any regions or faces in the part
// an all reduce is needed in case one part is empty (Ex: after hypergraph partitioning)
int dim;
if (adapter->getLocalNumOf(MESH_REGION)>0)
dim=3;
else if (adapter->getLocalNumOf(MESH_FACE)>0)
dim=2;
else
dim=0;
PCU_Max_Ints(&dim,1);
if (dim<2)
throw std::runtime_error("ParMA neeeds faces or region information");
//GFD Currently not allowing ParMA to balance non element primary types
if (dim!=adapter->getPrimaryEntityType())
throw std::runtime_error("ParMA only supports balancing primary type==mesh element");
//Create empty apf mesh
gmi_register_null();
gmi_model* g = gmi_load(".null");
enum MeshEntityType primary_type = entityAPFtoZ2(dim);
m = apf::makeEmptyMdsMesh(g,dim,false);
//Get entity topology types
const EntityTopologyType* tops;
try {
adapter->getTopologyViewOf(primary_type,tops);
}
Z2_FORWARD_EXCEPTIONS
//Get element global ids and part ids
const gno_t* element_gids;
const part_t* part_ids;
adapter->getIDsViewOf(primary_type,element_gids);
adapter->getPartsView(part_ids);
for (size_t i =0;i<adapter->getLocalNumOf(primary_type);i++)
mapping_elm_gids_index[element_gids[i]] = i;
//get vertex global ids
const gno_t* vertex_gids;
adapter->getIDsViewOf(MESH_VERTEX,vertex_gids);
//Get vertex coordinates
int c_dim = adapter->getDimension();
const scalar_t ** vertex_coords = new const scalar_t*[c_dim];
int* strides = new int[c_dim];
for (int i=0;i<c_dim;i++)
adapter->getCoordinatesViewOf(MESH_VERTEX,vertex_coords[i],strides[i],i);
//Get first adjacencies from elements to vertices
if (!adapter->availAdjs(primary_type,MESH_VERTEX))
throw "APF needs adjacency information from elements to vertices";
const lno_t* offsets;
const gno_t* adjacent_vertex_gids;
adapter->getAdjsView(primary_type, MESH_VERTEX,offsets,adjacent_vertex_gids);
//build the apf mesh
apf::GlobalToVert vertex_mapping;
apf::ModelEntity* interior = m->findModelEntity(m->getDimension(), 0);
for (size_t i=0;i<adapter->getLocalNumOf(MESH_VERTEX);i++) {
apf::MeshEntity* vtx = m->createVert_(interior);
scalar_t temp_coords[3];
for (int k=0;k<c_dim&&k<3;k++)
temp_coords[k] = vertex_coords[k][i*strides[k]];
for (int k=c_dim;k<3;k++)
temp_coords[k] = 0;
apf::Vector3 point(temp_coords[0],temp_coords[1],temp_coords[2]);
m->setPoint(vtx,0,point);
vertex_mapping[vertex_gids[i]] = vtx;
}
//Call modified helper functions to build the mesh from element to vertex adjacency
constructElements(adjacent_vertex_gids, adapter->getLocalNumOf(primary_type), offsets, tops, vertex_mapping);
constructResidence(vertex_mapping);
constructRemotes(vertex_mapping);
stitchMesh(m);
m->acceptChanges();
//Setup numberings of global ids and original part ids
// for use after ParMA is run
apf::FieldShape* s = apf::getConstant(dim);
gids = apf::createNumbering(m,"global_ids",s,1);
origin_part_ids = apf::createNumbering(m,"origin",s,1);
//number the global ids and original part ids
apf::MeshIterator* itr = m->begin(dim);
apf::MeshEntity* ent;
int i = 0;
while ((ent = m->iterate(itr))) {
apf::number(gids,ent,0,0,element_gids[i]);
apf::number(origin_part_ids,ent,0,0,PCU_Comm_Self());
i++;
}
m->end(itr);
//final setup for apf mesh
apf::alignMdsRemotes(m);
apf::deriveMdsModel(m);
m->acceptChanges();
m->verify();
//cleanup temp storage
delete [] vertex_coords;
delete [] strides;
}
void partition(const RCP<PartitioningSolution<Adapter> > &solution);
};
/////////////////////////////////////////////////////////////////////////////
template <typename Adapter>
void AlgParMA<Adapter>::partition(
const RCP<PartitioningSolution<Adapter> > &solution
)
{
//Get parameters
std::string alg_name = "VtxElm";
double imbalance = 1.1;
double step = .5;
int ghost_layers=3;
int ghost_bridge=m->getDimension()-1;
//Get the parameters for ParMA
const Teuchos::ParameterList &pl = env->getParameters();
try {
const Teuchos::ParameterList &ppl = pl.sublist("parma_parameters");
for (ParameterList::ConstIterator iter = ppl.begin();
iter != ppl.end(); iter++) {
const std::string &zname = pl.name(iter);
if (zname == "parma_method") {
std::string zval = pl.entry(iter).getValue(&zval);
alg_name = zval;
}
else if (zname == "step_size") {
double zval = pl.entry(iter).getValue(&zval);
step = zval;
}
else if (zname=="ghost_layers" || zname=="ghost_bridge") {
int zval = pl.entry(iter).getValue(&zval);
if (zname=="ghost_layers")
ghost_layers = zval;
else
ghost_bridge = zval;
}
}
}
catch (std::exception &e) {
//No parma_parameters sublist found
}
const Teuchos::ParameterEntry *pe2 = pl.getEntryPtr("imbalance_tolerance");
if (pe2){
imbalance = pe2->getValue<double>(&imbalance);
}
//booleans for which dimensions need weights
bool weightVertex,weightEdge,weightFace,weightElement;
weightVertex=weightEdge=weightFace=weightElement=false;
//Build the selected balancer
apf::Balancer* balancer;
const int verbose = 1;
if (alg_name=="Vertex") {
balancer = Parma_MakeVtxBalancer(m, step, verbose);
weightVertex = true;
}
else if (alg_name=="Element") {
balancer = Parma_MakeElmBalancer(m, step, verbose);
weightElement=true;
}
else if (alg_name=="VtxElm") {
balancer = Parma_MakeVtxElmBalancer(m,step,verbose);
weightVertex = weightElement=true;
}
else if (alg_name=="VtxEdgeElm") {
balancer = Parma_MakeVtxEdgeElmBalancer(m, step, verbose);
weightVertex=weightEdge=weightElement=true;
}
else if (alg_name=="Ghost") {
balancer = Parma_MakeGhostDiffuser(m, ghost_layers, ghost_bridge, step, verbose);
weightVertex=weightEdge=weightFace=true;
if (3 == m->getDimension()) {
weightElement=true;
}
}
else if (alg_name=="Shape") {
balancer = Parma_MakeShapeOptimizer(m,step,verbose);
weightElement=true;
}
else if (alg_name=="Centroid") {
balancer = Parma_MakeCentroidDiffuser(m,step,verbose);
weightElement=true;
}
else {
throw std::runtime_error("No such parma method defined");
}
//build the weights
apf::MeshTag* weights = setWeights(weightVertex,weightEdge,weightFace,weightElement);
//balance the apf mesh
balancer->balance(weights, imbalance);
delete balancer;
// Load answer into the solution.
int num_local = adapter->getLocalNumOf(adapter->getPrimaryEntityType());
ArrayRCP<part_t> partList(new part_t[num_local], 0, num_local, true);
//Setup for communication
PCU_Comm_Begin();
apf::MeshEntity* ent;
apf::MeshIterator* itr = m->begin(m->getDimension());
//Pack information back to each elements original owner
while ((ent=m->iterate(itr))) {
if (m->isOwned(ent)) {
part_t target_part_id = apf::getNumber(origin_part_ids,ent,0,0);
gno_t element_gid = apf::getNumber(gids,ent,0,0);
PCU_COMM_PACK(target_part_id,element_gid);
}
}
m->end(itr);
//Send information off
PCU_Comm_Send();
//Unpack information and set new part ids
while (PCU_Comm_Receive()) {
gno_t global_id;
PCU_COMM_UNPACK(global_id);
lno_t local_id = mapping_elm_gids_index[global_id];
part_t new_part_id = PCU_Comm_Sender();
partList[local_id] = new_part_id;
}
//construct partition solution
solution->setParts(partList);
// Clean up
apf::destroyNumbering(gids);
apf::destroyNumbering(origin_part_ids);
apf::removeTagFromDimension(m, weights, m->getDimension());
m->destroyTag(weights);
m->destroyNative();
apf::destroyMesh(m);
//only free PCU if it isn't being used outside
if (!pcu_outside)
PCU_Comm_Free();
}
} // namespace Zoltan2
#endif // HAVE_ZOLTAN2_PARMA
#endif
|