This file is indexed.

/usr/include/trilinos/Zoltan2_AlgRCM.hpp is in libtrilinos-zoltan2-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
// @HEADER
//
// ***********************************************************************
//
//   Zoltan2: A package of combinatorial algorithms for scientific computing
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine      (kddevin@sandia.gov)
//                    Erik Boman        (egboman@sandia.gov)
//                    Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
#ifndef _ZOLTAN2_ALGRCM_HPP_
#define _ZOLTAN2_ALGRCM_HPP_

#include <Zoltan2_Algorithm.hpp>
#include <Zoltan2_GraphModel.hpp>
#include <Zoltan2_OrderingSolution.hpp>
#include <Zoltan2_Sort.hpp>
#include <queue>


////////////////////////////////////////////////////////////////////////
//! \file Zoltan2_AlgRCM.hpp
//! \brief RCM ordering of a graph (serial, local graph only)


namespace Zoltan2{

template <typename Adapter>
class AlgRCM : public Algorithm<Adapter>
{
  private:

  const RCP<GraphModel<Adapter> > model;
  const RCP<Teuchos::ParameterList> pl;
  const RCP<const Teuchos::Comm<int> > comm;

  public:

  typedef typename Adapter::lno_t lno_t;
  typedef typename Adapter::gno_t gno_t;
  typedef typename Adapter::scalar_t scalar_t;

  AlgRCM(
    const RCP<GraphModel<Adapter> > &model__,
    const RCP<Teuchos::ParameterList> &pl__,
    const RCP<const Teuchos::Comm<int> > &comm__
  ) : model(model__), pl(pl__), comm(comm__)
  {
  }

  int globalOrder(const RCP<GlobalOrderingSolution<gno_t> > &solution)
  {
    throw std::logic_error("AlgRCM does not yet support global ordering.");
  }

  int localOrder(const RCP<LocalOrderingSolution<lno_t> > &solution)
  {
    int ierr= 0;

    HELLO;
  
    // Get local graph.
    ArrayView<const gno_t> edgeIds;
    ArrayView<const lno_t> offsets;
    ArrayView<StridedData<lno_t, scalar_t> > wgts;
  
    const size_t nVtx = model->getLocalNumVertices();
    model->getEdgeList(edgeIds, offsets, wgts); 
    const int numWeightsPerEdge = model->getNumWeightsPerEdge();
    if (numWeightsPerEdge > 1){
      throw std::runtime_error("Multiple weights not supported.");
    }
  
#if 0
    // Debug
    cout << "Debug: Local graph from getLocalEdgeList" << endl;
    cout << "rank " << comm->getRank() << ": nVtx= " << nVtx << endl;
    cout << "rank " << comm->getRank() << ": edgeIds: " << edgeIds << endl;
    cout << "rank " << comm->getRank() << ": offsets: " << offsets << endl;
#endif
  
    // RCM constructs invPerm, not perm
    const ArrayRCP<lno_t> invPerm = solution->getPermutationRCP(true);
  
    // Check if there are actually edges to reorder.
    // If there are not, then just use the natural ordering.
    if (offsets[nVtx] == 0) {
      for (size_t i = 0; i < nVtx; ++i) {
        invPerm[i] = i;
      }
      solution->setHaveInverse(true);
      return 0;
    }
  
    // Set the label of each vertex to invalid.
    Tpetra::global_size_t INVALID = Teuchos::OrdinalTraits<Tpetra::global_size_t>::invalid();
    for (size_t i = 0; i < nVtx; ++i) {
      invPerm[i] = INVALID;
    }
  
    // Loop over all connected components.
    // Do BFS within each component.
    gno_t root = 0;
    std::queue<gno_t> Q;
    size_t count = 0; // CM label, reversed later
    size_t next = 0;  // next unmarked vertex
    Teuchos::Array<std::pair<gno_t, size_t> >  children; // children and their degrees
  
    while (count < nVtx) {
  
      // Find suitable root vertex for this component.
      // First find an unmarked vertex, use to find root in next component.
      while ((next < nVtx) && (static_cast<Tpetra::global_size_t>(invPerm[next]) != INVALID)) next++;

      // Select root method. Pseudoperipheral usually gives the best
      // ordering, but the user may choose a faster method.
      std::string root_method = pl->get("root_method", "pseudoperipheral");
      if (root_method == std::string("first"))
        root = next;
      else if (root_method == std::string("smallest_degree"))
        root = findSmallestDegree(next, nVtx, edgeIds, offsets);
      else if (root_method == std::string("pseudoperipheral"))
        root = findPseudoPeripheral(next, nVtx, edgeIds, offsets);
      else {
        // This should never happen if pl was validated.
        throw std::runtime_error("invalid root_method");
      }

      // Label connected component starting at root
      Q.push(root);
      //cout << "Debug: invPerm[" << root << "] = " << count << endl;
      invPerm[root] = count++;
  
      while (Q.size()){
        // Get a vertex from the queue
        gno_t v = Q.front();
        Q.pop();
        //cout << "Debug: v= " << v << ", offsets[v] = " << offsets[v] << endl;
  
        // Add unmarked children to list of pairs, to be added to queue.
        children.resize(0);
        for (lno_t ptr = offsets[v]; ptr < offsets[v+1]; ++ptr){
          gno_t child = edgeIds[ptr];
          if (static_cast<Tpetra::global_size_t>(invPerm[child]) == INVALID){
            // Not visited yet; add child to list of pairs.
            std::pair<gno_t,size_t> newchild;
            newchild.first = child;
            newchild.second = offsets[child+1] - offsets[child];
            children.push_back(newchild); 
          }
        }
        // Sort children by increasing degree
        // TODO: If edge weights, sort children by decreasing weight,
        SortPairs<gno_t,size_t> zort;
        zort.sort(children);

        typename Teuchos::Array<std::pair<gno_t,size_t> >::iterator it = children.begin ();
        for ( ; it != children.end(); ++it){
          // Push children on the queue in sorted order.
          gno_t child = it->first;
          invPerm[child] = count++; // Label as we push on Q
          Q.push(child);
          //cout << "Debug: invPerm[" << child << "] = " << count << endl;
        }
      }
    }
  
    // Reverse labels for RCM
    bool reverse = true; // TODO: Make parameter
    if (reverse) {
      lno_t temp;
      for (size_t i=0; i < nVtx/2; ++i) {
        // Swap (invPerm[i], invPerm[nVtx-i])
        temp = invPerm[i];
        invPerm[i] = invPerm[nVtx-1-i];
        invPerm[nVtx-1-i] = temp;
      }
    }
  
    solution->setHaveInverse(true);
    return ierr;
  }

  private:
  // Find a smallest degree vertex in component containing v
  gno_t findSmallestDegree(
    gno_t v,
    lno_t nVtx,
    ArrayView<const gno_t> edgeIds,
    ArrayView<const lno_t> offsets)
  {
    std::queue<gno_t> Q;
    Teuchos::Array<bool> mark(nVtx);

    // Do BFS and compute smallest degree as we go
    lno_t smallestDegree = nVtx;
    gno_t smallestVertex = 0;

    // Clear mark array - nothing marked yet
    for (int i=0; i<nVtx; i++)
      mark[i] = false;

    // Start from v
    Q.push(v);
    while (Q.size()){
      // Get first vertex from the queue
      v = Q.front();
      Q.pop();
      // Check degree of v
      lno_t deg = offsets[v+1] - offsets[v];
      if (deg < smallestDegree){
        smallestDegree = deg;
        smallestVertex = v;
      }
      // Add unmarked children to queue
      for (lno_t ptr = offsets[v]; ptr < offsets[v+1]; ++ptr){
        gno_t child = edgeIds[ptr];
        if (!mark[child]){
          mark[child] = true; 
          Q.push(child);
        }
      }
    }
    return smallestVertex;
  }

  // Find a pseudoperipheral vertex in component containing v
  gno_t findPseudoPeripheral(
    gno_t v,
    lno_t nVtx,
    ArrayView<const gno_t> edgeIds,
    ArrayView<const lno_t> offsets)
  {
    std::queue<gno_t> Q;
    Teuchos::Array<bool> mark(nVtx);

    // Do BFS a couple times, pick vertex last visited (furthest away)
    const int numBFS = 2;
    for (int bfs=0; bfs<numBFS; bfs++){
      // Clear mark array - nothing marked yet
      for (int i=0; i<nVtx; i++)
        mark[i] = false;
      // Start from v
      Q.push(v);
      while (Q.size()){
        // Get first vertex from the queue
        v = Q.front();
        Q.pop();
        // Add unmarked children to queue
        for (lno_t ptr = offsets[v]; ptr < offsets[v+1]; ++ptr){
          gno_t child = edgeIds[ptr];
          if (!mark[child]){
            mark[child] = true; 
            Q.push(child);
          }
        }
      }
    }
    return v;
  }
  
};
}
#endif