This file is indexed.

/usr/include/trilinos/Zoltan2_MachineRCA.hpp is in libtrilinos-zoltan2-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#ifndef _ZOLTAN2_MACHINE_RCALIB_HPP_
#define _ZOLTAN2_MACHINE_RCALIB_HPP_

#include <Teuchos_Comm.hpp>
#include <Teuchos_CommHelpers.hpp>
#include <Zoltan2_Machine.hpp>

#ifdef HAVE_ZOLTAN2_RCALIB
extern "C"{
#include <rca_lib.h>
}
#endif


namespace Zoltan2{

/*! \brief A Machine Class for testing only
 *  A more realistic machine should be used for task mapping.
 */

template <typename pcoord_t, typename part_t>
class MachineRCA : public Machine <pcoord_t, part_t> {

public:
  /*! \brief Constructor: A BlueGeneQ network machine description;
   *  \param comm Communication object.
   */

  MachineRCA(const Teuchos::Comm<int> &comm):
    Machine<pcoord_t,part_t>(comm),
    networkDim(3), actual_networkDim(3),
    procCoords(NULL), actual_procCoords(NULL),
    machine_extent(NULL),actual_machine_extent(NULL),
    is_transformed(false), pl(NULL)
  {
    actual_machine_extent = machine_extent = new int[networkDim];
    this->getRealMachineExtent(this->machine_extent);
    actual_machine_extent = machine_extent;

    //allocate memory for processor coordinates.
    actual_procCoords = procCoords = new pcoord_t *[networkDim];
    for (int i = 0; i < networkDim; ++i){
      procCoords[i] = new pcoord_t[this->numRanks];
      memset(procCoords[i], 0, sizeof(pcoord_t) * this->numRanks);
    }

    //obtain the coordinate of the processor.
    pcoord_t *xyz = new pcoord_t[networkDim];
    getMyActualMachineCoordinate(xyz);
    for (int i = 0; i < networkDim; i++)
      procCoords[i][this->myRank] = xyz[i];
    delete [] xyz;


    //reduceAll the coordinates of each processor.
    gatherMachineCoordinates(comm);
  }

  virtual bool getMachineExtentWrapArounds(bool *wrap_around) const {
    int dim = 0;
    int transformed_network_dim = networkDim;
    if (dim < transformed_network_dim)
      wrap_around[dim++] = true;
    if (dim < transformed_network_dim)
      wrap_around[dim++] = true;
    if (dim < transformed_network_dim)
      wrap_around[dim++] = true;
    return true;
  }

  MachineRCA(const Teuchos::Comm<int> &comm, const Teuchos::ParameterList &pl_ ):
    Machine<pcoord_t,part_t>(comm),
    networkDim(3), actual_networkDim(3),
    procCoords(NULL), actual_procCoords(NULL),
    machine_extent(NULL),actual_machine_extent(NULL),
    is_transformed(false), pl(&pl_)
  {

    actual_machine_extent = machine_extent = new int[networkDim];
    this->getRealMachineExtent(this->machine_extent);
    actual_machine_extent = machine_extent;

    //allocate memory for processor coordinates.
    actual_procCoords = procCoords = new pcoord_t *[networkDim];
    for (int i = 0; i < networkDim; ++i){
      procCoords[i] = new pcoord_t[this->numRanks];
      memset(procCoords[i], 0, sizeof(pcoord_t) * this->numRanks);
    }
    //obtain the coordinate of the processor.
    pcoord_t *xyz = new pcoord_t[networkDim];
    getMyActualMachineCoordinate(xyz);
    for (int i = 0; i < networkDim; i++)
      procCoords[i][this->myRank] = xyz[i];
    delete [] xyz;


    //reduceAll the coordinates of each processor.
    gatherMachineCoordinates(comm);

    const Teuchos::ParameterEntry *pe2 = this->pl->getEntryPtr("Machine_Optimization_Level");
    //this->printAllocation();
    if (pe2){
      int optimization_level;
      optimization_level = pe2->getValue<int>(&optimization_level);

      if (optimization_level == 1){
        is_transformed = true;
        this->networkDim = 3;
        procCoords = new pcoord_t * [networkDim];
        for(int i = 0; i < networkDim; ++i){
          procCoords[i] = new pcoord_t[this->numRanks] ;//this->proc_coords[permutation[i]];
        }
        for (int i = 0; i < this->numRanks; ++i){
          procCoords[0][i] = this->actual_procCoords[0][i] * 8;
          int yordinal = this->actual_procCoords[1][i];
          procCoords[1][i] = yordinal/2 * (16 + 8) + (yordinal %2) * 8;
          int zordinal = this->actual_procCoords[2][i];
          procCoords[2][i] = zordinal * 5 + (zordinal / 8) * 3;
        }
        int mx = this->machine_extent[0];
        int my = this->machine_extent[1];
        int mz = this->machine_extent[2];


        this->machine_extent = new int[networkDim];
        this->machine_extent[0] = mx * 8;
        this->machine_extent[1] = my/2 * (16 + 8) + (my %2) * 8;
        this->machine_extent[2] = mz * 5 + (mz / 8) * 3;
        if(this->myRank == 0) std::cout << "Transforming the coordinates" << std::endl;
        //this->printAllocation();
      }
      else if(optimization_level >= 3){
        is_transformed = true;
        this->networkDim = 6;
        procCoords = new pcoord_t * [networkDim];
        for(int i = 0; i < networkDim; ++i){
          procCoords[i] = new pcoord_t[this->numRanks] ;//this->proc_coords[permutation[i]];
        }

        //this->machine_extent[0] = this->actual_machine_extent
        this->machine_extent = new int[networkDim];

        this->machine_extent[0] = ceil (int (this->actual_machine_extent[0]) / 2.0) * 64 ;
        this->machine_extent[3] = 2 * 8 ;
        this->machine_extent[1] = ceil(int (this->actual_machine_extent[1])  / 2.0) * 8 * 2400;
        this->machine_extent[4] = 2 * 8;
        this->machine_extent[2] = ceil((int (this->actual_machine_extent[2])) / 8.0) * 160;
        this->machine_extent[5] = 8 * 5;

        for (int k = 0; k < this->numRanks ; k++){
          //This part is for titan.
          //But it holds for other 3D torus machines such as Bluewaters.

          //Bandwitdh along
          // X = 75
          // Y = 37.5 or 75 --- everyother has 37.5 --- Y[0-1] =75 but Y[1-2]=37.5
          // Z = 75 or 120 ---- Y[0-1-2-3-4-5-6-7] = 120, Y[7-8] = 75

          //Along X we make groups of 2. Then scale the distance with 64.
          //First dimension is represents x/2
          procCoords[0][k] = (int (this->actual_procCoords[0][k]) / 2) * 64;
          //Then the 3rd dimension is x%2. distance is scaled with 8, reversely proportional with bw=75
          procCoords[3][k] = (int (this->actual_procCoords[0][k]) % 2) * 8 ;

          //Along Y. Every other one has the slowest link. So we want distances between Y/2 huge.
          //We scale Y/2 with 2400 so that we make sure that it is the first one we divie.
          procCoords[1][k] = (int (this->actual_procCoords[1][k])  / 2) * 8 * 2400;
          //The other one is scaled with 8 as in X.
          procCoords[4][k] = (int (this->actual_procCoords[1][k])  % 2) * 8;

          //We make groups of 8 along Z. Then distances between these groups are scaled with 160.
          //So that it is more than 2x distance than the distance with X grouping.
          //That is we scale the groups of Zs with 160. Groups of X with 64.
          //Zs has 8 processors connecting them, while X has only one. We want to divide along
          //Z twice before dividing along X.
          procCoords[2][k] = ((int (this->actual_procCoords[2][k])) / 8) * 160;
          //In the second group everything is scaled with 5, as bw=120
          procCoords[5][k] = ((int (this->actual_procCoords[2][k])) % 8) * 5;
        }
      }
      else if(optimization_level == 2){
        //This is as above case. but we make groups of 3 along X instead.
        is_transformed = true;
        this->networkDim = 6;
        procCoords = new pcoord_t * [networkDim];
        for(int i = 0; i < networkDim; ++i){
          procCoords[i] = new pcoord_t[this->numRanks] ;//this->proc_coords[permutation[i]];
        }

        //this->machine_extent[0] = this->actual_machine_extent
        this->machine_extent = new int[networkDim];

        this->machine_extent[0] = ceil(int (this->actual_machine_extent[0]) / 3.0) * 128 ;
        this->machine_extent[3] = 3 * 8 ;
        this->machine_extent[1] = ceil(int (this->actual_machine_extent[1])  / 2.0) * 8 * 2400;
        this->machine_extent[4] = 2 * 8;
        this->machine_extent[2] = ceil((int (this->actual_machine_extent[2])) / 8.0) * 160;
        this->machine_extent[5] = 8 * 5;


        for (int k = 0; k < this->numRanks ; k++){
          //This part is for titan.
          //But it holds for other 3D torus machines such as Bluewaters.

          //Bandwitdh along
          // X = 75
          // Y = 37.5 or 75 --- everyother has 37.5 --- Y[0-1] =75 but Y[1-2]=37.5
          // Z = 75 or 120 ---- Y[0-1-2-3-4-5-6-7] = 120, Y[7-8] = 75

          //In this case we make groups of 3. along X.
          procCoords[0][k] = (int (this->actual_procCoords[0][k]) / 3) * 128;
          //Then the 3rd dimension is x%2. distance is scaled with 8, reversely proportional with bw=75
          procCoords[3][k] = (int (this->actual_procCoords[0][k]) % 3) * 8 ;

          //Along Y. Every other one has the slowest link. So we want distances between Y/2 huge.
          //We scale Y/2 with 2400 so that we make sure that it is the first one we divie.
          procCoords[1][k] = (int (this->actual_procCoords[1][k])  / 2) * 8 * 2400;
          //The other one is scaled with 8 as in X.
          procCoords[4][k] = (int (this->actual_procCoords[1][k])  % 2) * 8;


          procCoords[2][k] = ((int (this->actual_procCoords[2][k])) / 8) * 160;
          //In the second group everything is scaled with 5, as bw=120
          procCoords[5][k] = ((int (this->actual_procCoords[2][k])) % 8) * 5;
        }
      }
    }
  }

  


  virtual ~MachineRCA() {
    if (is_transformed){
      is_transformed = false;
      for (int i = 0; i < actual_networkDim; i++){
        delete [] actual_procCoords[i];
      }
      delete [] actual_procCoords;
      delete [] actual_machine_extent;
    }
    for (int i = 0; i < networkDim; i++){
      delete [] procCoords[i];
    }
    delete [] procCoords;
    delete [] machine_extent;
  }

  bool hasMachineCoordinates() const { return true; }

  int getMachineDim() const { return this->networkDim;/*transformed_network_dim;*/  }
  int getRealMachineDim() const { return this->actual_networkDim;/*transformed_network_dim;*/  }

  bool getMachineExtent(int *nxyz) const {
    if (is_transformed){
      return false;
    }
    else {
      int dim = 0;
      nxyz[dim++] = this->machine_extent[0]; //x
      nxyz[dim++] = this->machine_extent[1]; //y
      nxyz[dim++] = this->machine_extent[2]; //z
      return true;
    }
  }

  bool getRealMachineExtent(int *nxyz) const {
#if defined (HAVE_ZOLTAN2_RCALIB)
    mesh_coord_t mxyz;
    rca_get_max_dimension(&mxyz);
    int dim = 0;
    nxyz[dim++] = mxyz.mesh_x + 1; //x
    nxyz[dim++] = mxyz.mesh_y + 1; //y
    nxyz[dim++] = mxyz.mesh_z + 1; //z
    return true;
#else
    return false;
#endif
  }


  void printAllocation(){
    if(this->myRank == 0){
      for (int i = 0; i < this->numRanks; ++i){ 
        std::cout << "Rank:" << i << " " << procCoords[0][i] << " " << procCoords[1][i] << " " << procCoords[2][i] << std::endl;
      } 
      std::cout << "Machine Extent:" << " " << this->machine_extent[0] << " " << this->machine_extent[1] << " " << this->machine_extent[2] << std::endl;
    }
  }

  bool getMyMachineCoordinate(pcoord_t *xyz) {
    for (int i = 0; i < this->networkDim; ++i){
      xyz[i] = procCoords[i][this->myRank];
    }
    return true;
  }

  bool getMyActualMachineCoordinate(pcoord_t *xyz) {
#if defined (HAVE_ZOLTAN2_RCALIB)
    rs_node_t nodeInfo;  /* Cray node info for node running this function */
    rca_get_nodeid(&nodeInfo);
    int NIDs = (int)nodeInfo.rs_node_s._node_id;  /* its node ID */

    mesh_coord_t node_coord;
    int returnval = rca_get_meshcoord((uint16_t)NIDs, &node_coord);
    if (returnval == -1){
      return false;
    }
    xyz[0] = node_coord.mesh_x;
    xyz[1] = node_coord.mesh_y;
    xyz[2] = node_coord.mesh_z;
    return true;
#else
    return false;
#endif
  }

  inline bool getMachineCoordinate(const int rank,
                                   pcoord_t *xyz) const {
    for (int i = 0; i < this->networkDim; ++i){
      xyz[i] = procCoords[i][rank];
    }
    return true;
  }


  bool getMachineCoordinate(const char *nodename, pcoord_t *xyz) {
    return false;  // cannot yet return from nodename
  }

  bool getAllMachineCoordinatesView(pcoord_t **&allCoords) const {
    allCoords = procCoords;
    return true;
  }

  virtual bool getHopCount(int rank1, int rank2, pcoord_t &hops){
    hops = 0;
    for (int i = 0; i < networkDim; ++i){
      pcoord_t distance = procCoords[i][rank1] - procCoords[i][rank2];
      if (distance < 0 ) distance = -distance;
      if (machine_extent[i] - distance < distance) distance = machine_extent[i] - distance;
      hops += distance;
    }
    return true;
  }


private:

  int networkDim;
  int actual_networkDim;

  pcoord_t **procCoords;
  pcoord_t **actual_procCoords;

  part_t *machine_extent;
  part_t *actual_machine_extent;
  bool is_transformed;


  const Teuchos::ParameterList *pl;
  //bool delete_tranformed_coords;

/*
  bool delete_transformed_coords;
  int transformed_network_dim;
  pcoord_t **transformed_coordinates;
*/
  void gatherMachineCoordinates(const Teuchos::Comm<int> &comm) {
    // reduces and stores all machine coordinates.
    pcoord_t *tmpVect = new pcoord_t [this->numRanks];

    for (int i = 0; i < networkDim; i++) {
      Teuchos::reduceAll<int, pcoord_t>(comm, Teuchos::REDUCE_SUM,
                                        this->numRanks, procCoords[i], tmpVect);
      pcoord_t *tmp = tmpVect;
      tmpVect = procCoords[i];
      procCoords[i] = tmp;
    }
    delete [] tmpVect;
  }

};
}
#endif