This file is indexed.

/usr/include/trilinos/Zoltan2_MetricUtility.hpp is in libtrilinos-zoltan2-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
// @HEADER
//
// ***********************************************************************
//
//   Zoltan2: A package of combinatorial algorithms for scientific computing
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine      (kddevin@sandia.gov)
//                    Erik Boman        (egboman@sandia.gov)
//                    Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER

/*! \file Zoltan2_MetricFunctions.hpp
 *  \functions which were with the metric classes but do not explicitly depend on them
 */

#ifndef ZOLTAN2_METRICFUNCTIONS_HPP
#define ZOLTAN2_METRICFUNCTIONS_HPP

#include <Zoltan2_StridedData.hpp>

namespace Zoltan2{

// this utlity method is used to allocate more metrics in the metric array
// the array is composed of an array of ptrs to BaseClassMetric
// but each ptr is allocated to the specific derived metric type
// So the array can access the polymorphic hierarchy
//
// Note this is currently only relevant to EvaluatePartition and the
// GraphMetrics and ImbalanceMetrics calculations
template <typename metric_t, typename scalar_t>
RCP<metric_t> addNewMetric(const RCP<const Environment> &env,
  ArrayRCP<RCP<BaseClassMetrics<scalar_t>>> &metrics)
{
  metrics.resize(metrics.size() + 1); // increase array size by 1
  metric_t * newMetric = new metric_t;  // allocate
  env->localMemoryAssertion(__FILE__,__LINE__,1,newMetric); // check errors
  RCP<metric_t> newRCP = rcp(newMetric);       // rcp of derived class
  metrics[metrics.size()-1] = newRCP; 				 // create the new rcp
  return newRCP;
}

///////////////////////////////////////////////////////////////////
// Namespace methods to compute metric values
///////////////////////////////////////////////////////////////////

/*! \brief Find min, max and sum of metric values.
 *   \param v  a list of values
 *   \param stride  the value such that \c v[offset + stride*i]
 *             will be included in the calculation for all possible i.
 *   \param offset  the offset at which calculation will begin.
 *   \param min  on return, min will hold the minimum of the values.
 *   \param max  on return, max will hold the maximum of the values.
 *   \param sum on return, sum will hold the sum of the values.
 */
template <typename scalar_t>
 void getStridedStats(const ArrayView<scalar_t> &v, int stride,
   int offset, scalar_t &min, scalar_t &max, scalar_t &sum)
{
  if (v.size() < 1) return;
  min = max = sum = v[offset];

  for (int i=offset+stride; i < v.size(); i += stride){
    if (v[i] < min) min = v[i];
    else if (v[i] > max) max = v[i];
    sum += v[i];
  }
}

/*! \brief Find max and sum of graph metric values.
 *   \param v  a list of values
 *   \param stride  the value such that \c v[offset + stride*i]
 *             will be included in the calculation for all possible i.
 *   \param offset  the offset at which calculation will begin.
 *   \param max  on return, max will hold the maximum of the values.
 *   \param sum on return, sum will hold the sum of the values.
 */
template <typename scalar_t>
 void getStridedStats(const ArrayView<scalar_t> &v, int stride,
   int offset, scalar_t &max, scalar_t &sum)
{
  if (v.size() < 1) return;
  max = sum = v[offset];

  for (int i=offset+stride; i < v.size(); i += stride){
    if (v[i] > max) max = v[i];
    sum += v[i];
  }
}

/*! \brief Compute the total weight in each part on this process.
 *
 * \param env the Environment for error messages
 * \param numberOfParts the number of Parts with respect to
 *          which weights should be computed.
 * \param parts the part Id for each object, which may range
 *         from 0 to one less than \c numberOfParts
 * \param vwgts \c vwgts[w] is the StridedData object
 *    representing weight index
 *    \c w.  vwgts[w][i] is the \c w'th weight for object \c i.
 * \param mcNorm the multiCriteria norm, to be used if the number of weights
 *           is greater than one.
 * \param weights on return, \c weights[p] is the total weight for part
      \c p. \c weights is allocated by the caller
 *
 * \todo - Zoltan_norm() in Zoltan may scale the weight. Do we ever need this?
 */

template <typename scalar_t, typename lno_t, typename part_t>
  void normedPartWeights(
    const RCP<const Environment> &env,
    part_t numberOfParts,
    const ArrayView<const part_t> &parts,
    const ArrayView<StridedData<lno_t, scalar_t> > &vwgts,
    multiCriteriaNorm mcNorm,
    scalar_t *weights)
{
  env->localInputAssertion(__FILE__, __LINE__, "parts or weights",
    numberOfParts > 0 && vwgts.size() > 0, BASIC_ASSERTION);

  int numObjects = parts.size();
  int vwgtDim = vwgts.size();

  memset(weights, 0, sizeof(scalar_t) * numberOfParts);

  if (numObjects == 0)
    return;

  if (vwgtDim == 0) {
    for (lno_t i=0; i < numObjects; i++){
      weights[parts[i]]++;
    }
  }
  else if (vwgtDim == 1){
    for (lno_t i=0; i < numObjects; i++){
      weights[parts[i]] += vwgts[0][i];
    }
  }
  else{
    switch (mcNorm){
      case normMinimizeTotalWeight:   /*!< 1-norm = Manhattan norm */
        for (int wdim=0; wdim < vwgtDim; wdim++){
          for (lno_t i=0; i < numObjects; i++){
            weights[parts[i]] += vwgts[wdim][i];
          }
        }  // next weight index
        break;

      case normBalanceTotalMaximum:   /*!< 2-norm = sqrt of sum of squares */
        for (lno_t i=0; i < numObjects; i++){
          scalar_t ssum = 0;
          for (int wdim=0; wdim < vwgtDim; wdim++)
            ssum += (vwgts[wdim][i] * vwgts[wdim][i]);
          weights[parts[i]] += sqrt(ssum);
        }
        break;

      case normMinimizeMaximumWeight: /*!< inf-norm = maximum norm */
        for (lno_t i=0; i < numObjects; i++){
          scalar_t max = 0;
          for (int wdim=0; wdim < vwgtDim; wdim++)
            if (vwgts[wdim][i] > max)
              max = vwgts[wdim][i];
          weights[parts[i]] += max;
        }
        break;

      default:
        env->localBugAssertion(__FILE__, __LINE__, "invalid norm", false,
          BASIC_ASSERTION);
        break;
    }
  }
}

/*! \brief Compute the imbalance
 *  \param numExistingParts the max Part ID + 1, which is the
 *             length of the \c vals array.
 *  \param targetNumParts the number of parts desired, which is the
 *             length of the \c psizes array if it is defined.
 *  \param psizes  if part sizes are not uniform then <tt> psizes[p]</tt>
 *        is the part size for part \c p, for \c p ranging from zero
 *        to one less than \c targetNumParts.  Part sizes must sum to one.
 *        If part sizes are uniform, \c psizes should be NULL.
 *  \param sumVals is the sum of the values in the \c vals list.
 *  \param vals  <tt> vals[p] </tt> is the amount in part \c p, for \c p
 *          ranging from zero to one less than \c numExistingParts.
 *  \param min  on return, min will be the minimum (best)
 *           imbalance of all the parts.
 *  \param max  on return, max will be the maximum imbalance of all the parts.
 *  \param avg  on return avg will be the average imbalance across the parts.
 *
 * Imbalance is a value between zero and one.  If \c target is the desired
 * amount in part \c p and \c actual is the actual amount in part \c p, then
 * the imbalance is:
    \code
           abs(target - actual) / target
    \endcode
 *
 * If the part is supposed to be empty (\c target is zero), then no
 * imbalance is computed for that part.  If \c actual for that part
 * is non-zero, then other parts are too small and the imbalance will
 * be found in those other parts.
 */

template <typename scalar_t, typename part_t>
void computeImbalances(
  part_t numExistingParts,  // Max Part ID + 1
  part_t targetNumParts,    // comm.size() or requested global # parts from soln
  const scalar_t *psizes,
  scalar_t sumVals,
  const scalar_t *vals,
  scalar_t &min,
  scalar_t &max,
  scalar_t &avg)
{
  min = sumVals;
  max = avg = 0;

  if (sumVals <= 0 || targetNumParts < 1 || numExistingParts < 1)
    return;

  if (targetNumParts==1) {
    min = max = avg = 0;  // 0 imbalance
    return;
  }

  if (!psizes){
    scalar_t target = sumVals / targetNumParts;
    for (part_t p=0; p < numExistingParts; p++){
      scalar_t diff = vals[p] - target;
      scalar_t adiff = (diff >= 0 ? diff : -diff);
      scalar_t tmp = diff / target;
      scalar_t atmp = adiff / target;
      avg += atmp;
      if (tmp > max) max = tmp;
      if (tmp < min) min = tmp;
    }
    part_t emptyParts = targetNumParts - numExistingParts;
    if (emptyParts > 0){
      if (max < 1.0)
        max = 1.0;       // target divided by target
      avg += emptyParts;
    }
  }
  else{
    for (part_t p=0; p < targetNumParts; p++){
      if (psizes[p] > 0){
        if (p < numExistingParts){
          scalar_t target = sumVals * psizes[p];
          scalar_t diff = vals[p] - target;
          scalar_t adiff = (diff >= 0 ? diff : -diff);
          scalar_t tmp = diff / target;
          scalar_t atmp = adiff / target;
          avg += atmp;
          if (tmp > max) max = tmp;
          if (tmp < min) min = tmp;
        }
        else{
          if (max < 1.0)
            max = 1.0;  // target divided by target
          avg += 1.0;
        }
      }
    }
  }

  avg /= targetNumParts;
}

/*! \brief Compute the imbalance in the case of multiple part sizes.
 *
 *  \param numExistingParts the max Part ID + 1, which is the
 *             length of the \c vals array.
 *  \param targetNumParts the number of parts desired, which is the
 *             length of the \c psizes array if it is defined.
 *  \param numSizes the number of part size arrays
 *  \param psizes  is an array of \c numSizes pointers to part size arrays.
 *         If the part sizes for index \c w are uniform, then
 *         <tt>psizes[w]</tt> should be NULL.  Otherwise it should
 *         point to \c targetNumParts sizes, and the sizes for each
 *         index should sum to one.
 *  \param sumVals is the sum of the values in the \c vals list.
 *  \param vals  <tt> vals[p] </tt> is the amount in part \c p, for \c p
 *          ranging from zero to one less than \c numExistingParts.
 *  \param min  on return, min will be the minimum (best) imbalance
 *          of all the parts.
 *  \param max  on return, max will be the maximum imbalance of all the parts.
 *  \param avg  on return avg will be the average imbalance across the parts.
 *
 * Imbalance is a value between zero and one.  If \c target is the desired
 * amount in part \c p and \c actual is the actual amount in part \c p, then
 * the imbalance is:
    \code
           abs(target - actual) / target
    \endcode
 *
 * If the part is supposed to be empty (\c target is zero), then no
 * imbalance is computed for that part.  If \c actual for that part
 * is non-zero, then other parts are too small and the imbalance will
 * be found in those other parts.
 */

template <typename scalar_t, typename part_t>
void computeImbalances(
  part_t numExistingParts,
  part_t targetNumParts,
  int numSizes,
  ArrayView<ArrayRCP<scalar_t> > psizes,
  scalar_t sumVals,
  const scalar_t *vals,
  scalar_t &min,
  scalar_t &max,
  scalar_t &avg)
{
  min = sumVals;
  max = avg = 0;

  if (sumVals <= 0 || targetNumParts < 1 || numExistingParts < 1)
    return;

  if (targetNumParts==1) {
    min = max = avg = 0;  // 0 imbalance
    return;
  }

  bool allUniformParts = true;
  for (int i=0; i < numSizes; i++){
    if (psizes[i].size() != 0){
      allUniformParts = false;
      break;
    }
  }

  if (allUniformParts){
    computeImbalances<scalar_t, part_t>(numExistingParts, targetNumParts, NULL,
      sumVals, vals, min, max, avg);
    return;
  }

  double uniformSize = 1.0 / targetNumParts;
  std::vector<double> sizeVec(numSizes);
  for (int i=0; i < numSizes; i++){
    sizeVec[i] = uniformSize;
  }

  for (part_t p=0; p < numExistingParts; p++){

    // If we have objects in parts that should have 0 objects,
    // we don't compute an imbalance.  It means that other
    // parts have too few objects, and the imbalance will be
    // picked up there.

    if (p >= targetNumParts)
      break;

    // Vector of target amounts: T

    double targetNorm = 0;
    for (int i=0; i < numSizes; i++) {
      if (psizes[i].size() > 0)
        sizeVec[i] = psizes[i][p];
      sizeVec[i] *= sumVals;
      targetNorm += (sizeVec[i] * sizeVec[i]);
    }
    targetNorm = sqrt(targetNorm);

    // If part is supposed to be empty, we don't compute an
    // imbalance.  Same argument as above.

    if (targetNorm > 0){

      // Vector of actual amounts: A

      std::vector<double> actual(numSizes);
      double actualNorm = 0.;
      for (int i=0; i < numSizes; i++) {
        actual[i] = vals[p] * -1.0;
        actual[i] += sizeVec[i];
        actualNorm += (actual[i] * actual[i]);
      }
      actualNorm = sqrt(actualNorm);

      //  |A - T| / |T|

      scalar_t imbalance = actualNorm / targetNorm;

      if (imbalance < min)
        min = imbalance;
      else if (imbalance > max)
        max = imbalance;
      avg += imbalance;
    }
  }

  part_t numEmptyParts = 0;

  for (part_t p=numExistingParts; p < targetNumParts; p++){
    bool nonEmptyPart = false;
    for (int i=0; !nonEmptyPart && i < numSizes; i++)
      if (psizes[i].size() > 0 && psizes[i][p] > 0.0)
        nonEmptyPart = true;

    if (nonEmptyPart){
      // The partition has no objects for this part, which
      // is supposed to be non-empty.
      numEmptyParts++;
    }
  }

  if (numEmptyParts > 0){
    avg += numEmptyParts;
    if (max < 1.0)
      max = 1.0;       // target divided by target
  }

  avg /= targetNumParts;
}

/*! \brief Compute the norm of the vector of weights.
 */
template <typename scalar_t>
  scalar_t normedWeight(ArrayView <scalar_t> weights,
    multiCriteriaNorm norm)
{
  size_t dim = weights.size();
  if (dim == 0)
    return 0.0;
  else if (dim == 1)
    return weights[0];

  scalar_t nweight = 0;

  switch (norm){
    case normMinimizeTotalWeight:   /*!< 1-norm = Manhattan norm */

      for (size_t i=0; i <dim; i++)
        nweight += weights[i];

      break;

    case normBalanceTotalMaximum:   /*!< 2-norm = sqrt of sum of squares */
      for (size_t i=0; i <dim; i++)
        nweight += (weights[i] * weights[i]);

      nweight = sqrt(nweight);

      break;

    case normMinimizeMaximumWeight: /*!< inf-norm = maximum norm */

      nweight = weights[0];
      for (size_t i=1; i <dim; i++)
        if (weights[i] > nweight)
          nweight = weights[i];

      break;

    default:
      std::ostringstream emsg;
      emsg << __FILE__ << ":" << __LINE__ << std::endl;
      emsg << "bug: " << "invalid norm" << std::endl;
      throw std::logic_error(emsg.str());
  }

  return nweight;
}

/*! \brief Compute the norm of the vector of weights stored as StridedData.
 */
template<typename lno_t, typename scalar_t>
  scalar_t normedWeight(ArrayView<StridedData<lno_t, scalar_t> > weights,
     lno_t idx, multiCriteriaNorm norm)
{
  size_t dim = weights.size();
  if (dim < 1)
    return 0;

  Array<scalar_t> vec(dim, 1.0);
  for (size_t i=0; i < dim; i++)
    if (weights[i].size() > 0)
       vec[dim] = weights[i][idx];

  return normedWeight(vec, norm);
}

} //namespace Zoltan2

#endif