/usr/include/trilinos/Zoltan2_OrderingSolution.hpp is in libtrilinos-zoltan2-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | // @HEADER
//
// ***********************************************************************
//
// Zoltan2: A package of combinatorial algorithms for scientific computing
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine (kddevin@sandia.gov)
// Erik Boman (egboman@sandia.gov)
// Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
/*! \file Zoltan2_OrderingSolution.hpp
\brief Defines the OrderingSolution class.
*/
#ifndef _ZOLTAN2_ORDERINGSOLUTION_HPP_
#define _ZOLTAN2_ORDERINGSOLUTION_HPP_
#include <Zoltan2_Standards.hpp>
#include <Zoltan2_Solution.hpp>
namespace Zoltan2 {
/*! \brief The class containing ordering solutions.
Template parameters:
\li \c index_t index type index_t will be lno_t (local) or gno_t (global)
The ordering solution always contains the permutation and the inverse permutation. These should be accessed through the accessor methods defined in this class, such as getPermutation(). Some ordering algorithms may compute and store other information. Currently, only serial ordering of the local data is supported.
In Zoltan2, perm[i]=j means index i in the reordered vector/matrix corresponds to index j in the old ordering. In Matlab notation, A(perm,perm) is the reordered matrix. This is consistent with SuiteSparse (AMD) and several other ordering packages. Unfortunately, this notation may conflict with a few other packages (such as Ifpack2).
*/
template <typename index_t>
class OrderingSolution : public Solution
{
public:
/*! \brief Constructor allocates memory for the solution.
*/
OrderingSolution(index_t perm_size) : separatorColBlocks_(0)
{
HELLO;
perm_size_ = perm_size;
perm_ = ArrayRCP<index_t>(perm_size_);
invperm_ = ArrayRCP<index_t>(perm_size_);
separatorRange_ = ArrayRCP<index_t>(perm_size_+1);
separatorTree_ = ArrayRCP<index_t>(perm_size_);
havePerm_ = false;
haveInverse_ = false;
haveSeparatorRange_ = false;
haveSeparatorTree_ = false;
}
/*! \brief Do we have the direct permutation?
*/
bool havePerm() const
{
return havePerm_;
}
/*! \brief Set havePerm (intended for ordering algorithms only)
*/
void setHavePerm(bool status)
{
havePerm_ = status;
}
/*! \brief Do we have the inverse permutation?
*/
bool haveInverse() const
{
return haveInverse_;
}
/*! \brief Set haveInverse (intended for ordering algorithms only)
*/
void setHaveInverse(bool status)
{
haveInverse_ = status;
}
/*! \brief set all separator flags.
*/
void setHaveSeparator(bool status) {
this->setHavePerm(status);
this->setHaveInverse(status);
this->setHaveSeparatorRange(status);
this->setHaveSeparatorTree(status);
}
/*! \brief Do we have the seperator range?
*/
bool haveSeparatorRange() const
{
return haveSeparatorRange_;
}
/*! \brief Set haveSeparatorRange (intended for ordering algorithms only)
*/
void setHaveSeparatorRange(bool status)
{
haveSeparatorRange_ = status;
}
/*! \brief Do we have the seperator tree?
*/
bool haveSeparatorTree() const
{
return haveSeparatorTree_;
}
/*! \brief Do we have the seperators?
*/
bool haveSeparators() const
{
return haveSeparatorRange() && haveSeparatorTree();
}
/*! \brief Set haveSeparatorTree (intended for ordering algorithms only)
*/
void setHaveSeparatorTree(bool status)
{
haveSeparatorTree_ = status;
}
/*! \brief Compute direct permutation from inverse.
*/
void computePerm()
{
if (haveInverse_) {
for(size_t i=0; i<perm_size_; i++) {
perm_[invperm_[i]] = i;
}
havePerm_ = true;
}
else {
// TODO: throw exception
std::cerr << "No inverse!" << std::endl;
}
}
/*! \brief Compute inverse permutation.
*/
void computeInverse()
{
if (havePerm_) {
for(size_t i=0; i<perm_size_; i++) {
invperm_[perm_[i]] = i;
}
havePerm_ = true;
}
else {
// TODO: throw exception
std::cerr << "No perm!" << std::endl;
}
}
/*! \brief Set number of separator column blocks.
*/
inline void setNumSeparatorBlocks(index_t nblks) {separatorColBlocks_ = nblks;}
//////////////////////////////////////////////
// Accessor functions, allowing algorithms to get ptrs to solution memory.
// Algorithms can then load the memory.
// Non-RCP versions are provided for applications to use.
/*! \brief Get (local) size of permutation.
*/
inline size_t getPermutationSize() const {return perm_size_;}
/*! \brief Get number of separator column blocks.
*/
inline index_t getNumSeparatorBlocks() const {return separatorColBlocks_;}
/*! \brief Get (local) permuted GIDs by RCP.
*/
// inline ArrayRCP<index_t> &getGidsRCP() {return gids_;}
/*! \brief Get (local) permutation by RCP.
* If inverse = true, return inverse permutation.
* By default, perm[i] is where new index i can be found in the old ordering.
* When inverse==true, perm[i] is where old index i can be found in the new ordering.
*/
inline const ArrayRCP<index_t> &getPermutationRCP(bool inverse=false) const
{
if (inverse)
return invperm_;
else
return perm_;
}
/*! \brief return vertex separator variables by reference.
*/
bool getVertexSeparator (index_t &numBlocks,
index_t *range,
index_t *tree) const {
if (this->haveSeparators()) {
numBlocks = this->getNumSeparatorBlocks();
range = this->getSeparatorRangeView();
tree = this->getSeparatorTreeView();
return true;
}
return false;
}
/*! \brief Get (local) seperator range by RCP.
*/
inline const ArrayRCP<index_t> &getSeparatorRangeRCP() const
{
return separatorRange_;
}
/*! \brief Get (local) seperator tree by RCP.
*/
inline const ArrayRCP<index_t> &getSeparatorTreeRCP() const
{
return separatorTree_;
}
/*! \brief Get (local) permuted GIDs by const RCP.
*/
// inline ArrayRCP<index_t> &getGidsRCPConst() const
// {
// return const_cast<ArrayRCP<index_t>& > (gids_);
// }
/*! \brief Get (local) permutation by const RCP.
* If inverse = true, return inverse permutation.
* By default, perm[i] is where new index i can be found in the old ordering.
* When inverse==true, perm[i] is where old index i can be found in the new ordering.
*/
inline ArrayRCP<index_t> &getPermutationRCPConst(bool inverse=false) const
{
if (inverse)
return const_cast<ArrayRCP<index_t>& > (invperm_);
else
return const_cast<ArrayRCP<index_t>& > (perm_);
}
/*! \brief Get seperator range by const RCP.
*/
inline ArrayRCP<index_t> &getSeparatorRangeRCPConst() const
{
return const_cast<ArrayRCP<index_t> & > (separatorRange_);
}
/*! \brief Get seperator tree by const RCP.
*/
inline ArrayRCP<index_t> &getSeparatorTreeRCPConst() const
{
return const_cast<ArrayRCP<index_t> & > (separatorTree_);
}
/*! \brief Get pointer to permutation.
* If inverse = true, return inverse permutation.
* By default, perm[i] is where new index i can be found in the old ordering.
* When inverse==true, perm[i] is where old index i can be found
* in the new ordering.
*/
inline index_t *getPermutationView(bool inverse = false) const
{
if (perm_size_) {
if (inverse)
return invperm_.getRawPtr();
else
return perm_.getRawPtr();
}
else
return NULL;
}
/*! \brief Get pointer to separator range.
*/
inline index_t *getSeparatorRangeView() const
{
// Here, don't need to check perm_size_ before calling getRawPtr.
// separatorRange_ always has some length, since it is allocated larger
// than other arrays.
return separatorRange_.getRawPtr();
}
/*! \brief Get pointer to separator tree.
*/
inline index_t *getSeparatorTreeView() const
{
if (perm_size_)
return separatorTree_.getRawPtr();
else
return NULL;
}
/*! \brief Get reference to separator column block.
*/
inline index_t &NumSeparatorBlocks()
{
return separatorColBlocks_;
}
/*! \brief returns 0 if permutation is valid, negative if invalid.
*/
int validatePerm()
{
size_t n = getPermutationSize();
if(!havePerm_) {
return -1;
}
std::vector<int> count(getPermutationSize());
for (size_t i = 0; i < n; i++) {
count[i] = 0;
}
for (size_t i = 0; i < n; i++) {
if ( (perm_[i] < 0) || (perm_[i] >= static_cast<index_t>(n)) )
return -1;
else
count[perm_[i]]++;
}
// Each index should occur exactly once (count==1)
for (size_t i = 0; i < n; i++) {
if (count[i] != 1){
return -2;
}
}
return 0;
}
protected:
// Ordering solution consists of permutation vector(s).
// Either perm or invperm should be computed by the algorithm.
size_t perm_size_;
bool havePerm_; // has perm_ been computed yet?
bool haveInverse_; // has invperm_ been computed yet?
bool haveSeparatorRange_; // has sepRange_ been computed yet?
bool haveSeparatorTree_; // has sepTree_ been computed yet?
ArrayRCP<index_t> perm_; // zero-based local permutation
ArrayRCP<index_t> invperm_; // inverse of permutation above
ArrayRCP<index_t> separatorRange_; // range iterator for separator tree
ArrayRCP<index_t> separatorTree_; // separator tree
index_t separatorColBlocks_; // number of column blocks in separator
};
template <typename lno_t>
class LocalOrderingSolution : public OrderingSolution<lno_t>
{
public:
LocalOrderingSolution(lno_t perm_size) : OrderingSolution<lno_t>(perm_size) {}
};
template <typename gno_t>
class GlobalOrderingSolution : public OrderingSolution<gno_t>
{
public:
GlobalOrderingSolution(gno_t perm_size) : OrderingSolution<gno_t>(perm_size) {}
};
}
#endif
|