This file is indexed.

/usr/include/trilinos/Zoltan2_OrderingSolution.hpp is in libtrilinos-zoltan2-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
// @HEADER
//
// ***********************************************************************
//
//   Zoltan2: A package of combinatorial algorithms for scientific computing
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine      (kddevin@sandia.gov)
//                    Erik Boman        (egboman@sandia.gov)
//                    Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER

/*! \file Zoltan2_OrderingSolution.hpp
    \brief Defines the OrderingSolution class.
*/

#ifndef _ZOLTAN2_ORDERINGSOLUTION_HPP_
#define _ZOLTAN2_ORDERINGSOLUTION_HPP_

#include <Zoltan2_Standards.hpp>
#include <Zoltan2_Solution.hpp>

namespace Zoltan2 {

/*! \brief The class containing ordering solutions.

    Template parameters:
    \li \c index_t    index type index_t will be lno_t (local) or gno_t (global)

The ordering solution always contains the permutation and the inverse permutation. These should be accessed through the accessor methods defined in this class, such as getPermutation(). Some ordering algorithms may compute and store other information. Currently, only serial ordering of the local data is supported.

In Zoltan2, perm[i]=j means index i in the reordered vector/matrix corresponds to index j in the old ordering. In Matlab notation, A(perm,perm) is the reordered matrix. This is consistent with SuiteSparse (AMD) and several other ordering packages. Unfortunately, this notation may conflict with a few other packages (such as Ifpack2). 

*/

template <typename index_t>
class OrderingSolution : public Solution
{
public:

  /*! \brief Constructor allocates memory for the solution.
   */
  OrderingSolution(index_t perm_size) : separatorColBlocks_(0)
  {
    HELLO;
    perm_size_        = perm_size;
    perm_             = ArrayRCP<index_t>(perm_size_);
    invperm_          = ArrayRCP<index_t>(perm_size_);
    separatorRange_   = ArrayRCP<index_t>(perm_size_+1);
    separatorTree_    = ArrayRCP<index_t>(perm_size_);

    havePerm_ = false;
    haveInverse_ = false;
    haveSeparatorRange_ = false;
    haveSeparatorTree_ = false;
  }

  /*! \brief Do we have the direct permutation?
   */
  bool havePerm() const
  {
    return havePerm_; 
  }

  /*! \brief Set havePerm (intended for ordering algorithms only)
   */
  void setHavePerm(bool status)
  {
    havePerm_ = status; 
  }


  /*! \brief Do we have the inverse permutation?
   */
  bool haveInverse() const
  {
    return haveInverse_; 
  }

  /*! \brief Set haveInverse (intended for ordering algorithms only)
   */
  void setHaveInverse(bool status)
  {
    haveInverse_ = status; 
  }
 
  /*! \brief set all separator flags.
   */
 void setHaveSeparator(bool status) {
    this->setHavePerm(status);
    this->setHaveInverse(status);
    this->setHaveSeparatorRange(status);
    this->setHaveSeparatorTree(status);
 } 
  /*! \brief Do we have the seperator range?
   */
  bool haveSeparatorRange() const
  {
    return haveSeparatorRange_; 
  }

  /*! \brief Set haveSeparatorRange (intended for ordering algorithms only)
   */
  void setHaveSeparatorRange(bool status)
  {
    haveSeparatorRange_ = status; 
  }
  
  /*! \brief Do we have the seperator tree?
   */
  bool haveSeparatorTree() const
  {
    return haveSeparatorTree_; 
  }
  
  /*! \brief Do we have the seperators?
   */
  bool haveSeparators() const
  {
    return haveSeparatorRange() && haveSeparatorTree(); 
  }

  /*! \brief Set haveSeparatorTree (intended for ordering algorithms only)
   */
  void setHaveSeparatorTree(bool status)
  {
    haveSeparatorTree_ = status; 
  }

  /*! \brief Compute direct permutation from inverse.
   */
  void computePerm()
  {
    if (haveInverse_) {
      for(size_t i=0; i<perm_size_; i++) {
        perm_[invperm_[i]] = i;
      }
      havePerm_ = true;
    }
    else {
      // TODO: throw exception
      std::cerr << "No inverse!" << std::endl;
    }
  }

  /*! \brief Compute inverse permutation.
   */
  void computeInverse()
  {
    if (havePerm_) {
      for(size_t i=0; i<perm_size_; i++) {
        invperm_[perm_[i]] = i;
      }
      havePerm_ = true;
    }
    else {
      // TODO: throw exception
      std::cerr << "No perm!" << std::endl;
    }
  }

  /*! \brief Set number of separator column blocks.
   */
  inline void setNumSeparatorBlocks(index_t nblks) {separatorColBlocks_ = nblks;}

  //////////////////////////////////////////////
  // Accessor functions, allowing algorithms to get ptrs to solution memory.
  // Algorithms can then load the memory.
  // Non-RCP versions are provided for applications to use.

  /*! \brief Get (local) size of permutation.
   */
  inline size_t getPermutationSize() const {return perm_size_;}
  
  /*! \brief Get number of separator column blocks.
   */
  inline index_t getNumSeparatorBlocks() const {return separatorColBlocks_;}

  /*! \brief Get (local) permuted GIDs by RCP.
   */
 // inline ArrayRCP<index_t>  &getGidsRCP()  {return gids_;}

  /*! \brief Get (local) permutation by RCP.
   *  If inverse = true, return inverse permutation.
   *  By default, perm[i] is where new index i can be found in the old ordering.
   *  When inverse==true, perm[i] is where old index i can be found in the new ordering.
   */
  inline const ArrayRCP<index_t> &getPermutationRCP(bool inverse=false) const
  {
    if (inverse)
      return invperm_;
    else
      return perm_;
  }
  
  /*! \brief return vertex separator variables by reference.
    */
  bool getVertexSeparator (index_t &numBlocks,
                           index_t *range,
                           index_t *tree) const {

    if (this->haveSeparators()) {
      numBlocks = this->getNumSeparatorBlocks();
      range = this->getSeparatorRangeView();
      tree = this->getSeparatorTreeView();
      return true;
    }

    return false;
  }

  /*! \brief Get (local) seperator range by RCP.
   */
  inline const ArrayRCP<index_t> &getSeparatorRangeRCP() const
  {
    return separatorRange_;
  }
  
  /*! \brief Get (local) seperator tree by RCP.
   */
  inline const ArrayRCP<index_t> &getSeparatorTreeRCP() const
  {
    return separatorTree_;
  }

  /*! \brief Get (local) permuted GIDs by const RCP.
   */
 // inline ArrayRCP<index_t>  &getGidsRCPConst()  const
 // {
 //   return const_cast<ArrayRCP<index_t>& > (gids_);
 // }

  /*! \brief Get (local) permutation by const RCP.
   *  If inverse = true, return inverse permutation.
   *  By default, perm[i] is where new index i can be found in the old ordering.
   *  When inverse==true, perm[i] is where old index i can be found in the new ordering.
   */
  inline ArrayRCP<index_t> &getPermutationRCPConst(bool inverse=false) const
  {
    if (inverse)
      return const_cast<ArrayRCP<index_t>& > (invperm_);
    else
      return const_cast<ArrayRCP<index_t>& > (perm_);
  }
  
  /*! \brief Get seperator range by const RCP.
   */
  inline ArrayRCP<index_t> &getSeparatorRangeRCPConst() const
  {
    return const_cast<ArrayRCP<index_t> & > (separatorRange_);
  }
  
  /*! \brief Get seperator tree by const RCP.
   */
  inline ArrayRCP<index_t> &getSeparatorTreeRCPConst() const
  {
    return const_cast<ArrayRCP<index_t> & > (separatorTree_);
  }

  /*! \brief Get pointer to permutation.
   *  If inverse = true, return inverse permutation.
   *  By default, perm[i] is where new index i can be found in the old ordering.
   *  When inverse==true, perm[i] is where old index i can be found 
   *  in the new ordering.
   */
  inline index_t *getPermutationView(bool inverse = false) const
  {
    if (perm_size_) {
      if (inverse)
        return invperm_.getRawPtr();
      else
        return perm_.getRawPtr();
    }
    else
      return NULL;
  }
  
  /*! \brief Get pointer to separator range.
   */
  inline index_t *getSeparatorRangeView() const
  {
    // Here, don't need to check perm_size_ before calling getRawPtr.
    // separatorRange_ always has some length, since it is allocated larger
    // than other arrays.
    return separatorRange_.getRawPtr();
  }

  /*! \brief Get pointer to separator tree.
   */
  inline index_t *getSeparatorTreeView() const
  {
    if (perm_size_)
      return separatorTree_.getRawPtr();
    else
      return NULL;
  }
  
  /*! \brief Get reference to separator column block.
   */
  inline index_t &NumSeparatorBlocks()
  {
    return separatorColBlocks_; 
  }

  /*! \brief returns 0 if permutation is valid, negative if invalid.
   */
  int validatePerm()
  {
    size_t n = getPermutationSize();

    if(!havePerm_) {
      return -1;
    }

    std::vector<int> count(getPermutationSize());
    for (size_t i = 0; i < n; i++) {
      count[i] = 0;
    }

    for (size_t i = 0; i < n; i++) {
      if ( (perm_[i] < 0) || (perm_[i] >= static_cast<index_t>(n)) )
        return -1;
      else
        count[perm_[i]]++;
    }

    // Each index should occur exactly once (count==1)
    for (size_t i = 0; i < n; i++) {
      if (count[i] != 1){
        return -2;
      }
    }

    return 0;
  }

protected:
  // Ordering solution consists of permutation vector(s).
  // Either perm or invperm should be computed by the algorithm.
  size_t perm_size_;
  bool havePerm_;                    // has perm_ been computed yet?
  bool haveInverse_;                 // has invperm_ been computed yet?
  bool haveSeparatorRange_;          // has sepRange_ been computed yet?
  bool haveSeparatorTree_;           // has sepTree_ been computed yet?
  ArrayRCP<index_t> perm_;           // zero-based local permutation
  ArrayRCP<index_t> invperm_;        // inverse of permutation above
  ArrayRCP<index_t> separatorRange_; // range iterator for separator tree
  ArrayRCP<index_t> separatorTree_;  // separator tree
  index_t separatorColBlocks_;       // number of column blocks in separator
};

template <typename lno_t>
class LocalOrderingSolution : public OrderingSolution<lno_t>
{
public:
  LocalOrderingSolution(lno_t perm_size) : OrderingSolution<lno_t>(perm_size) {}
};

template <typename gno_t>
class GlobalOrderingSolution : public OrderingSolution<gno_t>
{
public:
  GlobalOrderingSolution(gno_t perm_size) : OrderingSolution<gno_t>(perm_size) {}
};

}

#endif