/usr/include/intervaltree/IntervalTree.h is in libvcflib-dev 1.0.0~rc1+dfsg1-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | #ifndef __INTERVAL_TREE_H
#define __INTERVAL_TREE_H
#include <vector>
#include <algorithm>
#include <iostream>
#include <memory>
template <class T, typename K = std::size_t>
class Interval {
public:
K start;
K stop;
T value;
Interval(K s, K e, const T& v)
: start(s)
, stop(e)
, value(v)
{ }
};
template <class T, typename K>
K intervalStart(const Interval<T,K>& i) {
return i.start;
}
template <class T, typename K>
K intervalStop(const Interval<T,K>& i) {
return i.stop;
}
template <class T, typename K>
std::ostream& operator<<(std::ostream& out, Interval<T,K>& i) {
out << "Interval(" << i.start << ", " << i.stop << "): " << i.value;
return out;
}
template <class T, typename K = std::size_t>
class IntervalStartSorter {
public:
bool operator() (const Interval<T,K>& a, const Interval<T,K>& b) {
return a.start < b.start;
}
};
template <class T, typename K = std::size_t>
class IntervalTree {
public:
typedef Interval<T,K> interval;
typedef std::vector<interval> intervalVector;
typedef IntervalTree<T,K> intervalTree;
intervalVector intervals;
std::unique_ptr<intervalTree> left;
std::unique_ptr<intervalTree> right;
K center;
IntervalTree<T,K>(void)
: left(nullptr)
, right(nullptr)
, center(0)
{ }
private:
std::unique_ptr<intervalTree> copyTree(const intervalTree& orig){
return std::unique_ptr<intervalTree>(new intervalTree(orig));
}
public:
IntervalTree<T,K>(const intervalTree& other)
: intervals(other.intervals),
left(other.left ? copyTree(*other.left) : nullptr),
right(other.right ? copyTree(*other.right) : nullptr),
center(other.center)
{
}
public:
IntervalTree<T,K>& operator=(const intervalTree& other) {
center = other.center;
intervals = other.intervals;
left = other.left ? copyTree(*other.left) : nullptr;
right = other.right ? copyTree(*other.right) : nullptr;
return *this;
}
// Note: changes the order of ivals
IntervalTree<T,K>(
intervalVector& ivals,
std::size_t depth = 16,
std::size_t minbucket = 64,
K leftextent = 0,
K rightextent = 0,
std::size_t maxbucket = 512
)
: left(nullptr)
, right(nullptr)
{
--depth;
IntervalStartSorter<T,K> intervalStartSorter;
if (depth == 0 || (ivals.size() < minbucket && ivals.size() < maxbucket)) {
std::sort(ivals.begin(), ivals.end(), intervalStartSorter);
intervals = ivals;
} else {
if (leftextent == 0 && rightextent == 0) {
// sort intervals by start
std::sort(ivals.begin(), ivals.end(), intervalStartSorter);
}
K leftp = 0;
K rightp = 0;
K centerp = 0;
if (leftextent || rightextent) {
leftp = leftextent;
rightp = rightextent;
} else {
leftp = ivals.front().start;
std::vector<K> stops;
stops.resize(ivals.size());
transform(ivals.begin(), ivals.end(), stops.begin(), intervalStop<T,K>);
rightp = *max_element(stops.begin(), stops.end());
}
//centerp = ( leftp + rightp ) / 2;
centerp = ivals.at(ivals.size() / 2).start;
center = centerp;
intervalVector lefts;
intervalVector rights;
for (typename intervalVector::const_iterator i = ivals.begin(); i != ivals.end(); ++i) {
const interval& interval = *i;
if (interval.stop < center) {
lefts.push_back(interval);
} else if (interval.start > center) {
rights.push_back(interval);
} else {
intervals.push_back(interval);
}
}
if (!lefts.empty()) {
left = std::unique_ptr<intervalTree>(new intervalTree(lefts, depth, minbucket, leftp, centerp));
}
if (!rights.empty()) {
right = std::unique_ptr<intervalTree>(new intervalTree(rights, depth, minbucket, centerp, rightp));
}
}
}
intervalVector findOverlapping(K start, K stop) const {
intervalVector ov;
this->findOverlapping(start, stop, ov);
return ov;
}
void findOverlapping(K start, K stop, intervalVector& overlapping) const {
if (!intervals.empty() && ! (stop < intervals.front().start)) {
for (typename intervalVector::const_iterator i = intervals.begin(); i != intervals.end(); ++i) {
const interval& interval = *i;
if (interval.stop >= start && interval.start <= stop) {
overlapping.push_back(interval);
}
}
}
if (left && start <= center) {
left->findOverlapping(start, stop, overlapping);
}
if (right && stop >= center) {
right->findOverlapping(start, stop, overlapping);
}
}
intervalVector findContained(K start, K stop) const {
intervalVector contained;
this->findContained(start, stop, contained);
return contained;
}
void findContained(K start, K stop, intervalVector& contained) const {
if (!intervals.empty() && ! (stop < intervals.front().start)) {
for (typename intervalVector::const_iterator i = intervals.begin(); i != intervals.end(); ++i) {
const interval& interval = *i;
if (interval.start >= start && interval.stop <= stop) {
contained.push_back(interval);
}
}
}
if (left && start <= center) {
left->findContained(start, stop, contained);
}
if (right && stop >= center) {
right->findContained(start, stop, contained);
}
}
~IntervalTree(void) = default;
};
#endif
|