This file is indexed.

/usr/include/votca/csg/interaction.h is in libvotca-csg-dev 1.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/* 
 * Copyright 2009-2016 The VOTCA Development Team (http://www.votca.org)
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

#ifndef _interaction_H
#define	_interaction_H

#include <string>
#include <sstream>
#include "topology.h"
#include "bead.h"

namespace votca { namespace csg {
using namespace votca::tools;
using namespace std;

/**
    \brief base calss for all interactions

    This is the base class for all interactions.

    \todo double names/groups right, add molecules!!
*/
class Interaction
{
public:
    virtual ~Interaction() { }
    virtual double EvaluateVar(const Topology &top) = 0;
        
    void setName(const string &name) { _name = name; }
    string getName() const { return _name; }
        
    void setGroup(const string &group) { _group = group; RebuildName(); }
    const string &getGroup() const { return _group; }

    // the group id is set by topology, when interaction is added to it
    // \todo if the group name is changed later, group id should be updated by topology
    int getGroupId() { return _group_id; }
    void setGroupId(int id) { _group_id = id; }

    void setIndex(const int &index) { _index = index; RebuildName(); }
    const int &getIndex() const { return _index; }
    
    void setMolecule(const int &mol) { _mol = mol; RebuildName(); }
    const int &getMolecule() const { return _mol; }
    
    virtual vec Grad(const Topology &top, int bead) = 0;
    int BeadCount() { return _beads.size(); }
    int getBeadId(int bead) { return _beads[bead]; }
    
protected:
    int _index;
    string _group;
    int _group_id;
    string _name;
    int _mol;
    vector<int> _beads;
    
    void RebuildName();
};

inline void Interaction::RebuildName()
{
    stringstream s;
    s << _mol+1  << ":" << _group << ":" << _index+1;
    _name = s.str();
}

/**
    \brief bond interaction
*/
class IBond : public Interaction
{
public:
    IBond(int bead1, int bead2)
        { _beads.resize(2); _beads[0] = bead1; _beads[1] = bead2; }

    IBond(list<int> &beads)
        { assert(beads.size()>=2); _beads.resize(2); for(int i=0; i<2; ++i) { _beads[i] = beads.front(); beads.pop_front(); }}
    double EvaluateVar(const Topology &top);
    vec Grad(const Topology &top, int bead);

private:
};

/**
    \brief angle interaction
*/
class IAngle : public Interaction
{
public:
    IAngle(int bead1, int bead2, int bead3)
        { _beads.resize(3); _beads[0] = bead1; _beads[1] = bead2; _beads[2] = bead3;}
    IAngle(list<int> &beads)
        { assert(beads.size()>=3); _beads.resize(3); for(int i=0; i<3; ++i) { _beads[i] = beads.front(); beads.pop_front(); }}

    double EvaluateVar(const Topology &top);
    vec Grad(const Topology &top, int bead);

private:
};

/**
    \brief dihedral interaction
*/
class IDihedral : public Interaction
{
public:
    IDihedral(int bead1, int bead2, int bead3, int bead4)
        { _beads.resize(4); _beads[0] = bead1; _beads[1] = bead2; _beads[2] = bead3; _beads[3] = bead4;}
    IDihedral(list<int> &beads)
        { assert(beads.size()>=4); _beads.resize(4); for(int i=0; i<4; ++i) { _beads[i] = beads.front(); beads.pop_front(); }}
   
    double EvaluateVar(const Topology &top);
    vec Grad(const Topology &top, int bead);

private:
};

inline double IBond::EvaluateVar(const Topology &top)
{
    return abs(top.getDist(_beads[0], _beads[1]));
}

inline vec IBond::Grad(const Topology &top, int bead)
{
    vec r = top.getDist(_beads[0], _beads[1]); 
    r.normalize();
    return (bead == 0) ? -r : r;
}
    
inline double IAngle::EvaluateVar(const Topology &top)
{
    vec v1(top.getDist(_beads[1], _beads[0]));
    vec v2(top.getDist(_beads[1], _beads[2]));
    return  acos(v1*v2/sqrt((v1*v1) * (v2*v2)));    
}

inline vec IAngle::Grad(const Topology &top, int bead)
{
    /*vec v1(top.getDist(_beads[1], _beads[0]));
    vec v2(top.getDist(_beads[1], _beads[2]));
    
    double av1 = abs(v1);
    double av2 = abs(v2);
    double cosphi = v1*v2 / (av1*av2);
    double acos_prime = -1.0 / (sqrt(1 - (cosphi*cosphi) ));
    
    switch (bead) {
        case (0): return acos_prime * (v2 / (av1*av2) - v1*cosphi/(av1*av1)); break;
        case (1): return -acos_prime * ( (v1+v2)/(av1 * av2)) - 
                cosphi * ( v1/(av1*av1) + v2/(av2*av2) ); break;
        case (2): return acos_prime * (v1 / (av1*av2) - v2*cosphi/(av2*av2)); break;
    }
    return 0;
    */
    vec v1(top.getDist(_beads[1], _beads[0]));
    vec v2(top.getDist(_beads[1], _beads[2]));
    
    double acos_prime = 1.0 / (sqrt(1 - (v1*v2) * (v1*v2)/( abs(v1) * abs(v2) * abs(v1) * abs(v2) ) ));
    switch (bead) {
        case (0): return acos_prime * (-v2 / ( abs(v1)*abs(v2) ) +  (v1*v2) * v1 / ( abs(v2)*abs(v1)*abs(v1)*abs(v1) ) ); break;
        case (1): return acos_prime * ( (v1+v2)/(abs(v1) * abs(v2)) - (v1 * v2) * ((v2*v2) * v1 + (v1*v1) * v2 ) / ( abs(v1)*abs(v1)*abs(v1)*abs(v2)*abs(v2)*abs(v2) ) ); break;
        case (2): return acos_prime * (-v1 / ( abs(v1)*abs(v2) ) +  (v1*v2) * v2 / ( abs(v1)*abs(v2)*abs(v2)*abs(v2) ) ); break;
    }
    // should never reach this
    assert(false);
    return vec(0,0,0);
}

inline double IDihedral::EvaluateVar(const Topology &top)
{
    vec v1(top.getDist(_beads[0], _beads[1]));
    vec v2(top.getDist(_beads[1], _beads[2]));
    vec v3(top.getDist(_beads[2], _beads[3]));
    vec n1, n2;
    n1 = v1^v2; // calculate the normal vector
    n2 = v2^v3; // calculate the normal vector
    double sign = (v1*n2 < 0) ? -1 : 1;
    return sign*acos(n1*n2/sqrt((n1*n1) * (n2*n2)));
    //return sign*acos(n1*n2/sqrt((n1*n1) * (n2*n2))) + 1;
    //return pow(acos(n1*n2/sqrt((n1*n1) * (n2*n2))), 2);
}

inline vec IDihedral::Grad(const Topology &top, int bead)
{
    vec v1(top.getDist(_beads[0], _beads[1]));
    vec v2(top.getDist(_beads[1], _beads[2]));
    vec v3(top.getDist(_beads[2], _beads[3]));
    vec n1, n2;
    //cout << "v1: " << v1 << " , v2: " << v2 <<  " , v3: " << v3 <<endl;
    //cout << "n1: " << n1 << " , n2: " << n2 << endl;
    n1 = v1^v2; // calculate the normal vector
    n2 = v2^v3; // calculate the normal vector
    double sign = (v1*n2 < 0) ? -1 : 1;
    vec returnvec; //vector to return
    double returnvec0,returnvec1,returnvec2; //components of the return vector    
    vec e0(1,0,0); //unit vector pointing in x-direction
    vec e1(0,1,0); //unit vector pointing in y-direction
    vec e2(0,0,1); //unit vector pointing in z-direction
    
    
    double acos_prime = ( - 1.0 / (sqrt(1 - (n1*n2) * (n1*n2)/( abs(n1) * abs(n2) * abs(n1) * abs(n2) ) )) ) * sign;
    switch (bead) {
        case (0): { //
                    returnvec0 = acos_prime * ( ( n2*(v2^e0) )/( abs(n1)*abs(n2) ) - ( (n1*n2)*( n1*(v2^e0) ) )/( abs(n1)*abs(n1)*abs(n1)*abs(n2) ) );
                    returnvec1 = acos_prime * ( ( n2*(v2^e1) )/( abs(n1)*abs(n2) ) - ( (n1*n2)*( n1*(v2^e1) ) )/( abs(n1)*abs(n1)*abs(n1)*abs(n2) ) );
                    returnvec2 = acos_prime * ( ( n2*(v2^e2) )/( abs(n1)*abs(n2) ) - ( (n1*n2)*( n1*(v2^e2) ) )/( abs(n1)*abs(n1)*abs(n1)*abs(n2) ) );
                    returnvec.setX(returnvec0);
                    returnvec.setY(returnvec1);
                    returnvec.setZ(returnvec2);
                    return returnvec;
                    break;
        }             
        case (1): { //
                    returnvec0 = acos_prime * ( ( n1*(v3^e0)+n2*((e0^v1)+(e0^v2)) )/( abs(n1)*abs(n2) ) - ( (n1*n2)* ( ( n1*((e0^v1)+(e0^v2)) )/( abs(n1)*abs(n1)*abs(n1)*abs(n2) ) + ( n2*(v3^e0) )/( abs(n1)*abs(n2)*abs(n2)*abs(n2) ) ) ) );
                    returnvec1 = acos_prime * ( ( n1*(v3^e1)+n2*((e1^v1)+(e1^v2)) )/( abs(n1)*abs(n2) ) - ( (n1*n2)* ( ( n1*((e1^v1)+(e1^v2)) )/( abs(n1)*abs(n1)*abs(n1)*abs(n2) ) + ( n2*(v3^e1) )/( abs(n1)*abs(n2)*abs(n2)*abs(n2) ) ) ) );
                    returnvec2 = acos_prime * ( ( n1*(v3^e2)+n2*((e2^v1)+(e2^v2)) )/( abs(n1)*abs(n2) ) - ( (n1*n2)* ( ( n1*((e2^v1)+(e2^v2)) )/( abs(n1)*abs(n1)*abs(n1)*abs(n2) ) + ( n2*(v3^e2) )/( abs(n1)*abs(n2)*abs(n2)*abs(n2) ) ) ) );
                    returnvec.setX(returnvec0);
                    returnvec.setY(returnvec1);
                    returnvec.setZ(returnvec2);
                    return returnvec;
                    break;
        } ;
        case (2): { //
                    returnvec0 = acos_prime * ( ( n1*((e0^v2)+(e0^v3))+n2*(v1^e0) )/( abs(n1)*abs(n2) ) - ( (n1*n2)* ( ( n1*(v1^e0) )/( abs(n1)*abs(n1)*abs(n1)*abs(n2) ) + ( n2*((e0^v2)+(e0^v3)) )/( abs(n1)*abs(n2)*abs(n2)*abs(n2) ) ) ) );
                    returnvec1 = acos_prime * ( ( n1*((e1^v2)+(e1^v3))+n2*(v1^e1) )/( abs(n1)*abs(n2) ) - ( (n1*n2)* ( ( n1*(v1^e1) )/( abs(n1)*abs(n1)*abs(n1)*abs(n2) ) + ( n2*((e1^v2)+(e1^v3)) )/( abs(n1)*abs(n2)*abs(n2)*abs(n2) ) ) ) );
                    returnvec2 = acos_prime * ( ( n1*((e2^v2)+(e2^v3))+n2*(v1^e2) )/( abs(n1)*abs(n2) ) - ( (n1*n2)* ( ( n1*(v1^e2) )/( abs(n1)*abs(n1)*abs(n1)*abs(n2) ) + ( n2*((e2^v2)+(e2^v3)) )/( abs(n1)*abs(n2)*abs(n2)*abs(n2) ) ) ) );
                    returnvec.setX(returnvec0);
                    returnvec.setY(returnvec1);                    
                    returnvec.setZ(returnvec2);
                    return returnvec;
                    break;
        } ;
        case (3): { //
                    returnvec0 = acos_prime * ( ( n1*(v2^e0) )/( abs(n1)*abs(n2) ) - ( (n1*n2)*( n2*(v2^e0) ) )/( abs(n1)*abs(n2)*abs(n2)*abs(n2) ) );
                    returnvec1 = acos_prime * ( ( n1*(v2^e1) )/( abs(n1)*abs(n2) ) - ( (n1*n2)*( n2*(v2^e1) ) )/( abs(n1)*abs(n2)*abs(n2)*abs(n2) ) );
                    returnvec2 = acos_prime * ( ( n1*(v2^e2) )/( abs(n1)*abs(n2) ) - ( (n1*n2)*( n2*(v2^e2) ) )/( abs(n1)*abs(n2)*abs(n2)*abs(n2) ) );
                    returnvec.setX(returnvec0);
                    returnvec.setY(returnvec1);
                    returnvec.setZ(returnvec2);
                    return returnvec;
                    break;
        } ;
    }
    // should never reach this
    assert(false);
    return vec(0,0,0);
}

}}

#endif	/* _interaction_H */