/usr/share/votca/template/template_threaded.cc is in libvotca-csg-dev 1.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | /*
* Copyright 2009-2011 The VOTCA Development Team (http://www.votca.org)
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <stdlib.h>
#include <votca/csg/csgapplication.h>
#include <votca/tools/histogramnew.h>
#include <votca/csg/beadlist.h>
#include <votca/csg/nblist.h>
#include <votca/csg/nblistgrid.h>
using namespace std;
using namespace votca::csg;
// comments were mainly added to explain the "overhead" needed for threaded
// calculations/analyzations
// to sum it up: instead of having one "thread" doing all your work (the whole tracetory),
// you may split it into single frames and distribute it among many "workers".
// a solid choice is: number of cores = number of workers.
// you, as the user, are required to define how to initialize and merge your workers.
// the main part of the program, EvalConfiguration, is shifted to the Worker class
// but other than that stays untouched compared to a non-threaded version
class CsgTestApp
: public CsgApplication {
string ProgramName() {
return "template_threaded_rdf";
}
void HelpText(ostream &out) {
out << "template for threaded rdf calculations";
}
void Initialize();
bool DoTrajectory() {
return true;
}
// explicitly turn on threaded mode by overriding DoThreaded() and returning true
// note that threads will be started and merged in an ordered way by default
// this has the disadvantage of slowing everything down a bit (you will likely not
// notice a decrease of performance), but the advantage of processing frames in
// their original order
// in most cases, you want that
// in some cases, where reading and writing/merging does not have to occur in order,
// you may consider switching SynchronizeThreads() off
// in this example, where an rdf-like value is calculated, ordered reading/writing is not
// neccessary. however, leave it untouched to prevent future mistakes
bool DoThreaded() {
return true;
}
// are you sure? really?
// bool SynchronizeThreads() {
// return false;
// }
void BeginEvaluate(Topology *top, Topology *top_ref);
void EndEvaluate();
// ForkWorker is the function you need to override and initialize your workers
CsgApplication::Worker *ForkWorker(void);
// MergeWorker needs you to define how to merge different workers and their data
void MergeWorker(Worker *worker);
protected:
// data belonging to the main class CsgTestApp
HistogramNew _rdf;
double _cut_off;
};
// derive from CsgApplication::Worker and define your worker
class RDFWorker
: public CsgApplication::Worker {
public:
~RDFWorker(){};
// override EvalConfiguration with your analysis routine
void EvalConfiguration(Topology *top, Topology *top_ref);
// data belonging to this particular worker
HistogramNew _rdf;
double _cut_off;
};
int main(int argc, char** argv) {
CsgTestApp app;
return app.Exec(argc, argv);
}
void CsgTestApp::Initialize() {
CsgApplication::Initialize();
AddProgramOptions("RDF options")
("c", boost::program_options::value<double>()->default_value(1.0), "the cutoff");
}
void CsgTestApp::BeginEvaluate(Topology *top, Topology *top_ref) {
_cut_off = OptionsMap()["c"].as<double>();
_rdf.Initialize(0, _cut_off, 50);
}
// create and initialize single workers
// ForkWorker() will be called as often as the parameter '--nt NTHREADS'
// it creates a new worker and the user is required to initialize variables etc.
// (if needed)
CsgApplication::Worker * CsgTestApp::ForkWorker() {
RDFWorker *worker;
worker = new RDFWorker();
// initialize
worker->_cut_off = OptionsMap()["c"].as<double>();
worker->_rdf.Initialize(0, worker->_cut_off, 50);
return worker;
}
// EvalConfiguration does the actual calculation
// you won't see any explicit threaded stuff here
void RDFWorker::EvalConfiguration(Topology *top, Topology *top_ref) {
BeadList b;
b.Generate(*top, "*");
NBListGrid nb;
nb.setCutoff(_cut_off);
nb.Generate(b);
NBList::iterator i;
for (i = nb.begin(); i != nb.end(); ++i) {
_rdf.Process((*i)->dist());
}
}
// the user is required to define how to merge the single data
// belonging to each thread into the main data belonging to CsgTestApp
void CsgTestApp::MergeWorker(Worker *worker) {
RDFWorker * myRDFWorker;
// cast generel Worker into your derived worker class(here RDFWorker)
myRDFWorker = dynamic_cast<RDFWorker*> (worker);
// the next comment block explains how mutexes are used internally for this function:
// mutexes are used to exclusively work on data
// e.g., if you read or write global data, make sure that nobody else (i.e. no other worker)
// works on that very same piece of data at the same time; otherwise,
// you will end up with wrong results that you struggle to understand
// the parent class handles a "merging mutex" for you internally; this is what happens:
// first, a mutex is created, e.g.
// Mutex rdfMutex;
// then, for each worker, the mutex is first locked
// rdfMutex.Lock())
// and MergeWorker(worker) is called (i.e. the code you define here is executed)
// after MergeWorker exits, the mutex is unlocked
// rdfMutex.Unlock();
// and allows other threads to get a lock and start merging
// now follows your code
// merging of data in this simple example is easy and does not have to follow
// the original order of frames (since plain summing is commutative)
_rdf.data().y() = _rdf.data().y() + myRDFWorker->_rdf.data().y();
}
void CsgTestApp::EndEvaluate() {
_rdf.data().y() =
element_div(_rdf.data().y(),
element_prod(_rdf.data().x(), _rdf.data().x())
);
_rdf.data().Save("rdf.dat");
}
|