This file is indexed.

/usr/share/votca/template/template_threaded.cc is in libvotca-csg-dev 1.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*
 * Copyright 2009-2011 The VOTCA Development Team (http://www.votca.org)
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

#include <stdlib.h>
#include <votca/csg/csgapplication.h>
#include <votca/tools/histogramnew.h>
#include <votca/csg/beadlist.h>
#include <votca/csg/nblist.h>
#include <votca/csg/nblistgrid.h>

using namespace std;
using namespace votca::csg;

// comments were mainly added to explain the "overhead" needed for threaded 
// calculations/analyzations

// to sum it up: instead of having one "thread" doing all your work (the whole tracetory),
// you may split it into single frames and distribute it among many "workers".
// a solid choice is: number of cores = number of workers.
// you, as the user, are required to define how to initialize and merge your workers.
// the main part of the program, EvalConfiguration, is shifted to the Worker class 
// but other than that stays untouched compared to a non-threaded version

class CsgTestApp
: public CsgApplication {

    string ProgramName() {
        return "template_threaded_rdf";
    }

    void HelpText(ostream &out) {
        out << "template for threaded rdf calculations";
    }

    void Initialize();

    bool DoTrajectory() {
        return true;
    }

// explicitly turn on threaded mode by overriding DoThreaded() and returning true
// note that threads will be started and merged in an ordered way by default
// this has the disadvantage of slowing everything down a bit (you will likely not
// notice a decrease of performance), but the advantage of processing frames in
// their original order
// in most cases, you want that
// in some cases, where reading and writing/merging does not have to occur in order, 
// you may consider switching SynchronizeThreads() off 
// in this example, where an rdf-like value is calculated, ordered reading/writing is not
// neccessary. however, leave it untouched to prevent future mistakes

    bool DoThreaded() {
        return true;
    }
// are you sure? really?
// bool SynchronizeThreads() {
//      return false;
//  }

    void BeginEvaluate(Topology *top, Topology *top_ref);
    void EndEvaluate();

// ForkWorker is the function you need to override and initialize your workers
    CsgApplication::Worker *ForkWorker(void);

// MergeWorker needs you to define how to merge different workers and their data
    void MergeWorker(Worker *worker);
protected:
// data belonging to the main class CsgTestApp
    HistogramNew _rdf;
    double _cut_off;

};

// derive from CsgApplication::Worker and define your worker
class RDFWorker
: public CsgApplication::Worker {
public:
    ~RDFWorker(){};
// override EvalConfiguration with your analysis routine
    void EvalConfiguration(Topology *top, Topology *top_ref);
// data belonging to this particular worker
    HistogramNew _rdf;
    double _cut_off;

};

int main(int argc, char** argv) {
    CsgTestApp app;

    return app.Exec(argc, argv);
}

void CsgTestApp::Initialize() {
    CsgApplication::Initialize();
    AddProgramOptions("RDF options")
            ("c", boost::program_options::value<double>()->default_value(1.0), "the cutoff");
}

void CsgTestApp::BeginEvaluate(Topology *top, Topology *top_ref) {
    _cut_off = OptionsMap()["c"].as<double>();
    _rdf.Initialize(0, _cut_off, 50);
}

// create and initialize single workers
// ForkWorker() will be called as often as the parameter '--nt NTHREADS'
// it creates a new worker and the user is required to initialize variables etc.
// (if needed)
CsgApplication::Worker * CsgTestApp::ForkWorker() {
    RDFWorker *worker;
    worker = new RDFWorker();
// initialize
    worker->_cut_off = OptionsMap()["c"].as<double>();
    worker->_rdf.Initialize(0, worker->_cut_off, 50);
    return worker; 
}

// EvalConfiguration does the actual calculation
// you won't see any explicit threaded stuff here
void RDFWorker::EvalConfiguration(Topology *top, Topology *top_ref) {
    BeadList b;
    b.Generate(*top, "*");
    NBListGrid nb;
    nb.setCutoff(_cut_off);
    nb.Generate(b);
    NBList::iterator i;
    for (i = nb.begin(); i != nb.end(); ++i) {
        _rdf.Process((*i)->dist());
    }
}

// the user is required to define how to merge the single data
// belonging to each thread into the main data belonging to CsgTestApp
void CsgTestApp::MergeWorker(Worker *worker) {
    RDFWorker * myRDFWorker;
// cast generel Worker into your derived worker class(here RDFWorker)
    myRDFWorker = dynamic_cast<RDFWorker*> (worker);

// the next comment block explains how mutexes are used internally for this function:
// mutexes are used to exclusively work on data
// e.g., if you read or write global data, make sure that nobody else (i.e. no other worker)
// works on that very same piece of data at the same time; otherwise,
// you will end up with wrong results that you struggle to understand
// the parent class handles a "merging mutex" for you internally; this is what happens:
// first, a mutex is created, e.g.
//        Mutex rdfMutex;
// then, for each worker, the mutex is first locked
//        rdfMutex.Lock())
// and MergeWorker(worker) is called (i.e. the code you define here is executed)
// after MergeWorker exits, the mutex is unlocked
//        rdfMutex.Unlock();
// and allows other threads to get a lock and start merging

// now follows your code

// merging of data in this simple example is easy and does not have to follow
// the original order of frames (since plain summing is commutative)
    _rdf.data().y() = _rdf.data().y() + myRDFWorker->_rdf.data().y();

}

void CsgTestApp::EndEvaluate() {
    _rdf.data().y() = 
            element_div(_rdf.data().y(),
            element_prod(_rdf.data().x(), _rdf.data().x())
            );

    _rdf.data().Save("rdf.dat");
}