/usr/include/wfmath-1.0/wfmath/rotmatrix.h is in libwfmath-1.0-dev 1.0.2+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | // rotmatrix.h (RotMatrix<> class definition)
//
// The WorldForge Project
// Copyright (C) 2001 The WorldForge Project
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// For information about WorldForge and its authors, please contact
// the Worldforge Web Site at http://www.worldforge.org.
// Author: Ron Steinke
// Created: 2001-12-7
#ifndef WFMATH_ROTMATRIX_H
#define WFMATH_ROTMATRIX_H
#include <wfmath/const.h>
#include <iosfwd>
namespace WFMath {
/// returns m1 * m2
template<int dim> // m1 * m2
RotMatrix<dim> Prod(const RotMatrix<dim>& m1, const RotMatrix<dim>& m2);
/// returns m1 * m2^-1
template<int dim> // m1 * m2^-1
RotMatrix<dim> ProdInv(const RotMatrix<dim>& m1, const RotMatrix<dim>& m2);
/// returns m1^-1 * m2
template<int dim> // m1^-1 * m2
RotMatrix<dim> InvProd(const RotMatrix<dim>& m1, const RotMatrix<dim>& m2);
/// returns m1^-1 * m2^-1
template<int dim> // m1^-1 * m2^-1
RotMatrix<dim> InvProdInv(const RotMatrix<dim>& m1, const RotMatrix<dim>& m2);
template<int dim> // m * v
Vector<dim> Prod(const RotMatrix<dim>& m, const Vector<dim>& v);
template<int dim> // m^-1 * v
Vector<dim> InvProd(const RotMatrix<dim>& m, const Vector<dim>& v);
template<int dim> // v * m
Vector<dim> Prod(const Vector<dim>& v, const RotMatrix<dim>& m);
template<int dim> // v * m^-1
Vector<dim> ProdInv(const Vector<dim>& v, const RotMatrix<dim>& m);
/// returns m1 * m2
template<int dim>
RotMatrix<dim> operator*(const RotMatrix<dim>& m1, const RotMatrix<dim>& m2);
template<int dim>
Vector<dim> operator*(const RotMatrix<dim>& m, const Vector<dim>& v);
template<int dim>
Vector<dim> operator*(const Vector<dim>& v, const RotMatrix<dim>& m);
template<int dim>
std::ostream& operator<<(std::ostream& os, const RotMatrix<dim>& m);
template<int dim>
std::istream& operator>>(std::istream& is, RotMatrix<dim>& m);
/// A dim dimensional rotation matrix. Technically, a member of the group O(dim).
/**
* Elements of this class represent rotation matrices. The NxN dimensional
* rotation matrices form a group called O(N), the orthogonal
* matrices. They satisfy the following condition:
*
* They are orthogonal. That is, their transpose is equal to their inverse.
* Hence, this class does not implement a transpose() method, only an
* inverse().
*
* A general N dimensional matrix of this type has N(N-1)/2 degrees of freedom.
* This gives one rotation angle in 2D, the three Euler angles in 3D, etc.
*
* This class implements the 'generic' subset of the interface in
* the fake class Shape.
**/
template<int dim = 3>
class RotMatrix {
public:
///
RotMatrix() : m_flip(false), m_valid(false), m_age(0) {}
///
RotMatrix(const RotMatrix& m);
friend std::ostream& operator<< <dim>(std::ostream& os, const RotMatrix& m);
friend std::istream& operator>> <dim>(std::istream& is, RotMatrix& m);
RotMatrix& operator=(const RotMatrix& m);
// No operator=(CoordType d[dim][dim]), since it can fail.
// Use setVals() instead.
bool isEqualTo(const RotMatrix& m, CoordType epsilon = numeric_constants<CoordType>::epsilon()) const;
bool operator==(const RotMatrix& m) const {return isEqualTo(m);}
bool operator!=(const RotMatrix& m) const {return !isEqualTo(m);}
bool isValid() const {return m_valid;}
/// set the matrix to the identity matrix
RotMatrix& identity();
/// get the (i, j) element of the matrix
CoordType elem(const int i, const int j) const {return m_elem[i][j];}
/// Set the values of the elements of the matrix
/**
* Can't set one element at a time and keep it an O(N) matrix,
* but can try to set all values at once, and see if they match.
* This fails if the passed matrix is not orthogonal within the
* passed precision, and orthogonalizes the matrix to within
* precision WFMATH_EPSILON.
**/
bool setVals(const CoordType vals[dim][dim], CoordType precision = numeric_constants<CoordType>::epsilon());
/// Set the values of the elements of the matrix
/**
* Can't set one element at a time and keep it an O(N) matrix,
* but can try to set all values at once, and see if they match.
* This fails if the passed matrix is not orthogonal within the
* passed precision, and orthogonalizes the matrix to within
* precision WFMATH_EPSILON.
**/
bool setVals(const CoordType vals[dim*dim], CoordType precision = numeric_constants<CoordType>::epsilon());
/// Get a copy of the i'th row as a Vector
Vector<dim> row(const int i) const;
/// Get a copy of the i'th column as a Vector
Vector<dim> column(const int i) const;
/// Get the trace of the matrix
CoordType trace() const;
/// Get the determinant of the matrix
/**
* Since the matrix is orthogonal, the determinant is always either 1 or -1.
**/
CoordType determinant() const {return (m_flip ? -1.f : 1.f);}
/// Get the inverse of the matrix
/**
* Since the matrix is orthogonal, the inverse is equal to the transpose.
**/
RotMatrix inverse() const;
/// Get the parity of the matrix
/**
* Returns true for odd parity, false for even.
**/
bool parity() const {return m_flip;}
// documented outside the class
friend RotMatrix Prod<dim> (const RotMatrix& m1, const RotMatrix& m2);
friend RotMatrix ProdInv<dim> (const RotMatrix& m1, const RotMatrix& m2);
friend RotMatrix InvProd<dim> (const RotMatrix& m1, const RotMatrix& m2);
friend RotMatrix InvProdInv<dim> (const RotMatrix& m1, const RotMatrix& m2);
friend Vector<dim> Prod<dim> (const RotMatrix& m, const Vector<dim>& v);
friend Vector<dim> InvProd<dim> (const RotMatrix& m, const Vector<dim>& v);
// Set the value to a given rotation
/// set the matrix to a rotation by the angle theta in the (i, j) plane
RotMatrix& rotation (const int i, const int j, CoordType theta);
/// set the matrix to a rotation by the angle theta in the v1, v2 plane
/**
* Throws CollinearVectors if v1 and v2 are parallel
**/
RotMatrix& rotation (const Vector<dim>& v1, const Vector<dim>& v2,
CoordType theta);
/// set the matrix to a rotation which will move "from" to lie parallel to "to"
/**
* Throws CollinearVectors if v1 and v2 are antiparallel (parallel but
* pointing in opposite directions). If v1 and v2 point in the
* same direction, the matrix is set to the identity.
**/
RotMatrix& rotation (const Vector<dim>& from, const Vector<dim>& to);
// Set the value to mirror image about a certain axis
/// set the matrix to a mirror perpendicular to the i'th axis
RotMatrix& mirror(const int i);
/// set the matrix to a mirror perpendicular to the Vector v
RotMatrix& mirror(const Vector<dim>& v);
/// set the matrix to mirror all axes
/**
* This is a good parity operator if dim is odd.
**/
RotMatrix& mirror();
/// rotate the matrix using another matrix
RotMatrix& rotate(const RotMatrix& m) {return *this = Prod(*this, m);}
/// normalize to remove accumulated round-off error
void normalize();
/// current round-off age
unsigned age() const {return m_age;}
// 2D/3D stuff
/// 3D only: Construct a RotMatrix from a Quaternion
/**
* since Quaternions can only specify parity-even
* rotations, you can pass the return value of
* Quaternion::fromRotMatrix() as not_flip to
* recover the full RotMatrix
**/
RotMatrix(const Quaternion& q, const bool not_flip = true);
/// 2D only: Construct a RotMatrix from an angle theta
RotMatrix& rotation(CoordType theta)
{return rotation(0, 1, theta);}
/// 3D only: set a RotMatrix to a rotation about the x axis by angle theta
RotMatrix& rotationX(CoordType theta) {return rotation(1, 2, theta);}
/// 3D only: set a RotMatrix to a rotation about the y axis by angle theta
RotMatrix& rotationY(CoordType theta) {return rotation(2, 0, theta);}
/// 3D only: set a RotMatrix to a rotation about the z axis by angle theta
RotMatrix& rotationZ(CoordType theta) {return rotation(0, 1, theta);}
/// 3D only: set a RotMatrix to a rotation about the axis given by the Vector
RotMatrix& rotation(const Vector<dim>& axis, CoordType theta);
/// 3D only: set a RotMatrix to a rotation about the axis given by the Vector
/**
* the rotation angle is taken from the Vector's magnitude
**/
RotMatrix& rotation(const Vector<dim>& axis); // angle taken from magnitude of axis
/// 3D only: set a RotMatrix from a Quaternion
/**
* since Quaternions can only specify parity-even
* rotations, you can pass the return value of
* Quaternion::fromRotMatrix() as not_flip to
* recover the full RotMatrix
**/
RotMatrix& fromQuaternion(const Quaternion& q, const bool not_flip = true);
/// rotate the matrix using the quaternion
RotMatrix& rotate(const Quaternion&);
/// set a RotMatrix to a mirror perpendicular to the x axis
RotMatrix& mirrorX() {return mirror(0);}
/// set a RotMatrix to a mirror perpendicular to the y axis
RotMatrix& mirrorY() {return mirror(1);}
/// set a RotMatrix to a mirror perpendicular to the z axis
RotMatrix& mirrorZ();
private:
CoordType m_elem[dim][dim];
bool m_flip; // True if the matrix is parity odd
bool m_valid;
unsigned m_age;
// Backend to setVals() above, also used in fromStream()
bool _setVals(CoordType *vals, CoordType precision = numeric_constants<CoordType>::epsilon());
void checkNormalization() {if(m_age >= WFMATH_MAX_NORM_AGE && m_valid) normalize();}
};
template<>
inline RotMatrix<3>& RotMatrix<3>::mirrorZ()
{
return mirror(2);
}
template<int dim>
inline RotMatrix<dim>& RotMatrix<dim>::mirror(const int i)
{
identity();
m_elem[i][i] = -1;
m_flip = true;
// m_valid and m_age already set correctly
return *this;
}
} // namespace WFMath
#endif // WFMATH_ROTMATRIX_H
|