/usr/include/libwildmagic/Wm5Ellipsoid3.inl is in libwildmagic-dev 5.13-1ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | // Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.0 (2010/01/01)
//----------------------------------------------------------------------------
template <typename Real>
Ellipsoid3<Real>::Ellipsoid3 ()
{
}
//----------------------------------------------------------------------------
template <typename Real>
Ellipsoid3<Real>::~Ellipsoid3 ()
{
}
//----------------------------------------------------------------------------
template <typename Real>
Ellipsoid3<Real>::Ellipsoid3 (const Vector3<Real>& center,
const Vector3<Real> axis[3], const Real extent[3])
:
Center(center)
{
Axis[0] = axis[0];
Axis[1] = axis[1];
Axis[2] = axis[2];
Extent[0] = extent[0];
Extent[1] = extent[1];
Extent[2] = extent[2];
}
//----------------------------------------------------------------------------
template <typename Real>
Ellipsoid3<Real>::Ellipsoid3 (const Vector3<Real>& center,
const Vector3<Real>& axis0, const Vector3<Real>& axis1,
const Vector3<Real>& axis2, const Real extent0, const Real extent1,
const Real extent2)
:
Center(center)
{
Axis[0] = axis0;
Axis[1] = axis1;
Axis[2] = axis2;
Extent[0] = extent0;
Extent[1] = extent1;
Extent[2] = extent2;
}
//----------------------------------------------------------------------------
template <typename Real>
void Ellipsoid3<Real>::GetM (Matrix3<Real>& M) const
{
Vector3<Real> ratio0 = Axis[0]/Extent[0];
Vector3<Real> ratio1 = Axis[1]/Extent[1];
Vector3<Real> ratio2 = Axis[2]/Extent[2];
M = Matrix3<Real>(ratio0, ratio0) + Matrix3<Real>(ratio1, ratio1)
+ Matrix3<Real>(ratio2, ratio2);
}
//----------------------------------------------------------------------------
template <typename Real>
void Ellipsoid3<Real>::GetMInverse (Matrix3<Real>& MInverse) const
{
Vector3<Real> ratio0 = Axis[0]*Extent[0];
Vector3<Real> ratio1 = Axis[1]*Extent[1];
Vector3<Real> ratio2 = Axis[2]*Extent[2];
MInverse = Matrix3<Real>(ratio0, ratio0) +
Matrix3<Real>(ratio1, ratio1) + Matrix3<Real>(ratio2, ratio2);
}
//----------------------------------------------------------------------------
template <typename Real>
void Ellipsoid3<Real>::ToCoefficients (Real coeff[10]) const
{
Matrix3<Real> A;
Vector3<Real> B;
Real C;
ToCoefficients(A, B, C);
Convert(A, B, C, coeff);
// Arrange for one of the x0^2, x1^2, or x2^2 coefficients to be 1.
Real maxValue = Math<Real>::FAbs(coeff[4]);
int maxIndex = 4;
Real absValue = Math<Real>::FAbs(coeff[7]);
if (absValue > maxValue)
{
maxValue = absValue;
maxIndex = 7;
}
absValue = Math<Real>::FAbs(coeff[9]);
if (absValue > maxValue)
{
maxValue = absValue;
maxIndex = 9;
}
Real invMaxValue = ((Real)1)/maxValue;
for (int i = 0; i < 10; ++i)
{
if (i != maxIndex)
{
coeff[i] *= invMaxValue;
}
else
{
coeff[i] = (Real)1.0;
}
}
}
//----------------------------------------------------------------------------
template <typename Real>
void Ellipsoid3<Real>::ToCoefficients (Matrix3<Real>& A,
Vector3<Real>& B, Real& C) const
{
Vector3<Real> ratio0 = Axis[0]/Extent[0];
Vector3<Real> ratio1 = Axis[1]/Extent[1];
Vector3<Real> ratio2 = Axis[2]/Extent[2];
A = Matrix3<Real>(ratio0, ratio0) + Matrix3<Real>(ratio1, ratio1)
+ Matrix3<Real>(ratio2, ratio2);
B = ((Real)-2)*(A*Center);
C = A.QForm(Center, Center) - (Real)1;
}
//----------------------------------------------------------------------------
template <typename Real>
bool Ellipsoid3<Real>::FromCoefficients (const Real coeff[10])
{
Matrix3<Real> A;
Vector3<Real> B;
Real C;
Convert(coeff, A, B, C);
return FromCoefficients(A, B, C);
}
//----------------------------------------------------------------------------
template <typename Real>
bool Ellipsoid3<Real>::FromCoefficients (const Matrix3<Real>& A,
const Vector3<Real>& B, Real C)
{
// Compute the center K = -A^{-1}*B/2.
Matrix3<Real> invA = A.Inverse();
if (invA == Matrix3<Real>::ZERO)
{
return false;
}
Center = ((Real)-0.5)*(invA*B);
// Compute B^T*A^{-1}*B/4 - C = K^T*A*K - C = -K^T*B/2 - C.
Real rightSide = -((Real)0.5)*(Center.Dot(B)) - C;
if (Math<Real>::FAbs(rightSide) < Math<Real>::ZERO_TOLERANCE)
{
return false;
}
// Compute M = A/(K^T*A*K - C).
Real invRightSide = ((Real)1)/rightSide;
Matrix3<Real> M = invRightSide*A;
// Factor into M = R*D*R^T.
EigenDecomposition<Real> eigensystem(M);
eigensystem.Solve(true);
for (int i = 0; i < 3; ++i)
{
if (eigensystem.GetEigenvalue(i) <= (Real)0)
{
return false;
}
Extent[i] = Math<Real>::InvSqrt(eigensystem.GetEigenvalue(i));
Axis[i] = eigensystem.GetEigenvector3(i);
}
return true;
}
//----------------------------------------------------------------------------
template <typename Real>
Real Ellipsoid3<Real>::Evaluate (const Vector3<Real>& point) const
{
Vector3<Real> diff = point - Center;
Real ratio0 = Axis[0].Dot(diff)/Extent[0];
Real ratio1 = Axis[1].Dot(diff)/Extent[1];
Real ratio2 = Axis[2].Dot(diff)/Extent[2];
Real value = ratio0*ratio0 + ratio1*ratio1 + ratio2*ratio2 - (Real)1;
return value;
}
//----------------------------------------------------------------------------
template <typename Real>
bool Ellipsoid3<Real>::Contains (const Vector3<Real>& point) const
{
return (Evaluate(point) <= (Real)0);
}
//----------------------------------------------------------------------------
template <typename Real>
void Ellipsoid3<Real>::Convert (const Real coeff[10], Matrix3<Real>& A,
Vector3<Real>& B, Real& C)
{
C = coeff[0];
B[0] = coeff[1];
B[1] = coeff[2];
B[2] = coeff[3];
A[0][0] = coeff[4];
A[0][1] = ((Real)0.5)*coeff[5];
A[0][2] = ((Real)0.5)*coeff[6];
A[1][0] = A[0][1];
A[1][1] = coeff[7];
A[1][2] = ((Real)0.5)*coeff[8];
A[2][0] = A[0][2];
A[2][1] = A[1][2];
A[2][2] = coeff[9];
}
//----------------------------------------------------------------------------
template <typename Real>
void Ellipsoid3<Real>::Convert (const Matrix3<Real>& A,
const Vector3<Real>& B, Real C, Real coeff[10])
{
coeff[0] = C;
coeff[1] = B[0];
coeff[2] = B[1];
coeff[3] = B[2];
coeff[4] = A[0][0];
coeff[5] = ((Real)2)*A[0][1];
coeff[6] = ((Real)2)*A[0][2];
coeff[7] = A[1][1];
coeff[8] = ((Real)2)*A[1][2];
coeff[9] = A[2][2];
}
//----------------------------------------------------------------------------
|