/usr/include/libwildmagic/Wm5Minimize1.h is in libwildmagic-dev 5.13-1ubuntu3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | // Geometric Tools, LLC
// Copyright (c) 1998-2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
// http://www.geometrictools.com/License/Boost/LICENSE_1_0.txt
//
// File Version: 5.0.2 (2011/03/09)
#ifndef WM5MINIMIZE1_H
#define WM5MINIMIZE1_H
#include "Wm5MathematicsLIB.h"
namespace Wm5
{
template <typename Real>
class WM5_MATHEMATICS_ITEM Minimize1
{
public:
// The type of function to be minimized: result = f(t,userData). The
// userData is the pointer provided by the constructor or SetUserData(*).
// This allows you to pass a class static function that wraps a call to a
// nonstatic member function, in which case userData is a pointer to the
// class object. Naturally, the userData may be as complicated as you
// need it to ensure that the 'function' has all the information needed to
// compute it.
typedef Real (*Function)(Real,void*);
// Construction and destruction. The interval [t0,t1] provided to
// GetMinimum(Real,Real,Real,Real&,Real&) is processed by examining
// subintervals. On each subinteral [a,b], the values f0 = f(a),
// f1 = f((a+b)/2), and f2 = f(b) are examined. If {f0,f1,f2} is
// monotonic, then [a,b] is subdivided and processed. The maximum depth
// of the recursion is limited by 'maxLevel'. If {f0,f1,f2} is not
// monotonic, then two cases arise. First, if f1 = min{f0,f1,f2}, then
// {f0,f1,f2} is said to "bracket a minimum" and GetBracketedMinimum(*) is
// called to locate the function minimum. The process uses a form of
// bisection called "parabolic interpolation" and the maximum number of
// bisection steps is 'maxBracket'. Second, if f1 = max{f0,f1,f2}, then
// {f0,f1,f2} brackets a maximum. The minimum search continues
// recursively as before on [a,(a+b)/2] and [(a+b)/2,b].
Minimize1 (Function function, int maxLevel, int maxBracket,
void* userData = 0);
~Minimize1 ();
// Member access.
void SetUserData (void* userData);
void* GetUserData () const;
// Search for a minimum of 'function' on the interval [t0,t1] using an
// initial guess of 'tInitial'. The location of the minimum is 'tMin' and
// the value of the minimum is 'fMin'.
void GetMinimum (Real t0, Real t1, Real tInitial, Real& tMin, Real& fMin);
private:
// This is called to start the search on [t0,tInitial] and [tInitial,t1].
void GetMinimum (Real t0, Real f0, Real t1, Real f1, int level);
// This is called recursively to search [a,(a+b)/2] and [(a+b)/2,b].
void GetMinimum (Real t0, Real f0, Real tm, Real fm, Real t1, Real f1,
int level);
// This is called when {f0,f1,f2} brackets a minimum.
void GetBracketedMinimum (Real t0, Real f0, Real tm, Real fm, Real t1,
Real f1, int level);
Function mFunction;
int mMaxLevel;
int mMaxBracket;
void* mUserData;
Real mTMin, mFMin;
};
typedef Minimize1<float> Minimize1f;
typedef Minimize1<double> Minimize1d;
}
#endif
|